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Introduction

Since the discovery of vulcanization in the nineteenth century, rubber has been a major 
industrial product. From its inception, the use of vulcanising agents, reinforcing fi llers 
and other additives has been a major feature of the rubber industry. Innumerable articles 
and texts attest to the skill in balancing the chemical and physical properties of the 
manufactured products. 

In most cases, experimenters have been concerned with how recipe changes affect the 
product properties while the physical processes which formed the test specimen are not 
considered. For the rubber processor, however, it is these mechanical operations which 
form the heart of his business. The equipment needed for plant-scale production requires 
millions of dollars of capital investment. In the highly competitive rubber industry, 
the ability to save two or three cents per pound of product through better design or 
more effi cient operation of mixing equipment can make a tremendous difference in 
the profi tability of a company. Despite the commercial importance of the process, no 
comprehensive analysis of rubber mixing, considered as a unit operation, is currently 
available. This monograph is designed to fi ll that gap in the arsenal available for problem 
solving by the production engineer or the machine designer. 

Mixing as a general operation may be considered as three basic processes occurring 
simultaneously. Simple mixing ensures that the mixture has a uniform composition 
throughout its bulk, at least when viewed on a scale large compared to the size of the 
individual particles. In the case of solids blending (Chapter 2), the particle size need not 
change, but the distribution of particles throughout the mixture approaches a random 
distribution. 

If the shear forces are suffi ciently large, particles may fracture, as in dispersive mixing, 
and the polymer may fl ow, as in mixing (Chapter 3). In both of these processes, the 
size of the original particles or fl uid elements changes because of the mixing process. 
Then the properties of the mixture depend upon the size of the basic structures reached 
during mixing. In the case of laminar mixing, the size may be the striation thickness 
of a hypothetical fl uid element, which is inversely related to the total shear strain. If 
relatively strong particles, or aggregates of particles, are present, these must be reduced 
in size by the action of forces generated by fl ow in the mixer. Then the size is the actual 
additive particle size. 

Introduction

AuthorAuthor 1
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The relative balance between the importance of these three processes in determining 
the effi ciency of mixing and the product quality depends upon the attraction between 
particles, the rubber fl ow properties, the geometry of the mixer and the operating 
conditions such as temperature, mixing time and rotor speed. 

The interaction of operating conditions, raw material properties and the quality of 
mixing can be a formidable phenomenon to analyse. However, in many cases a number 
of simplifying assumptions about the operation can be made. The fi rst of these is that 
in any piece of mixing equipment, there is one vital section where the fl ow conditions 
in that region determine the rate and quality of mixing; the essential physical processes 
can be described if fl ow in that region can be analysed. For two roll-mills (Chapter 4) 
this is the nip region; it is the region between the rotor tip and chamber wall for internal 
mixers (Chapter 5). In every case, the geometry of the mixer is treated locally as if it 
were fl ow between parallel planes and the actual mixer geometry is incorporated by 
allowing the space between these hypothetical planes to vary with position in the mixer; 
this is the basis of the lubrication approximation.

For most mixing operations, the primary driving force for fl uid motion is drag fl ow 
caused by the relative options of metal boundaries in the equipment. Pressure fl ow is 
relatively unimportant for mixing. In many cases, the rubber can be treated as Newtonian 
or a power-law fl uid, which greatly simplifi es the analysis. However, the visco-elastic 
nature of rubber compounds imposes a severe limitation on the stability of the mixing 
operation (Chapter 4).

One major limitation to the speed of operation of a mixing process, besides the 
mechanical ruggedness of the equipment, is the temperature rise in the rubber stock 
because of viscous dissipation. The heat transfer in mixing equipment may be a problem, 
especially in larger mixers. The effi ciency of heat transfer depends upon the geometry 
of the mixer and the operation conditions, as treated in the analyses.

Following a basic description of the three fundamental processes it is necessary to see 
how these occur in actual mixers. The primary difference between types of mixers is 
the geometry of the metal boundaries. In two-roll mills (Chapter 4) the geometry is the 
simple symmetry of parallel cylinders. With internal mixers (Chapter 5) and continuous 
mixers (Chapter 6) the geometry is more complex. Yet the same kind of fl uid mechanical 
analysis can be used for all types of mixers.

One of the most common problems facing a process engineer is how to transfer a product 
from a small laboratory mixer to a plant scale machine. Simple rules for scale-up can 
be extracted from the analyses of each mixer type based upon an understanding of the 
fundamental processes. These are treated in some detail for each mixer because of their 
importance in handling processing problems. Although the terminology used is that for 
scale-up, the same rules can easily be used for process control to reduce batch-to-batch 
variability. Essentially the rules tell how to set the operating variables for a mixer when 
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the required conditions for good mixing of a material on the same or a different mixer 
are known.

The basic fl ow equations can also be used in their complete form for the model 
calculations on a computer to study basic mixer performance.

In the chapters that follow, a description of the basic fl ow processes is fi rst developed. 
Then these are applied to commercially important mixers to obtain a quantitative 
description of their operation. These analyses form the basis of a rational, coherent 
description of rubber mixing which can be used for machine design, process control 
and process scale-up.
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Blending of Particles

AuthorAuthor 2
The blending of particulate solids without a phase change involves the spatial 
rearrangement of the particles without a change in particle size. A random distribution 
of the particles is usually sought and expected so that the concepts of probability and 
statistics can be used to describe the process. In this chapter quantitative methods for 
calculating the state of the mixture will be described followed by a discussion of the 
kinetics of mixing and the effi ciency of mixer designs.

2.1 The Statistical Description of Mixing 

The quantitative evaluation of the state of a mixture, its degree of mixing and the kinetics 
of mixing is given by the statistical theory of mixing. Simple mixing, the process achieved 
by blending, can be understood by considering Figure 2.1. Initially the entire contents of 
the mixer or blender is partitioned into two sections, one of which contains only white 
particles and the other contains only black particles. Each particle is very small compared 
to the size of the apparatus and there is a large but fi nite number of each kind of particle. 
Consider then that a number of small samples are extracted from the apparatus from 
randomly selected positions in the mixture. Each sample thus selected will be large 
enough to contain a suffi cient number of particles to treat using statistical methods but 
will be small enough to leave the mixture essentially unchanged. These requirements on 
sample selection can pose experimental problems for a practical application, but for the 
idealised mixture considered here, the conditions can be considered to be met. Several 
representative samples taken from the mixture, as suggested in Figure 2.1A are shown 
enlarged in Figure 2.1B. The scale of mixing is the average distance separating one type 
of particle from a different type of particle [1]. Before the process commences, the scale 
of mixing in this example is larger than a sample size, Figure 2.1B, and is of the same 
order as the dimensions of the equipment. Except for a few samples which might be 
selected from the interface separating the two mixer regions, a sample from the starting 
material will contain either all white particles or all black particles. 

At a later time after the mixing process has begun, some black particles have moved into 
the region initially occupied by white particles and some white particles have moved into 
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Figure 2.1 Simple mixing
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the black zone, as in Figure 2.1C. The average distance white and black particles, the 
scale of mixing, has been reduced. Again a random selection of samples is extracted from 
the mixture as shown in Figure 2.1D. Now most samples will contain both white and 
black particles, although the proportion of each will vary from one sample to another. 
The average composition over all samples will equal the overall composition known 
from the material charged to the mixture. It is how the distribution of compositions 
of samples around the average value changes which is important for the description of 
mixing.

With further mixing, the black and white particles intermingle to a greater extent. In 
a good blender (as described later) a state of random mixing is ultimately reached. 
Now the probability of fi nding a particle of a given type at any particular point in the 
mixer is a constant which equals the proportion of that type of particle in the mix. 
If the composition of a number of random samples extracted from the mixture were 
measured, the mean value over all samples would equal the average value for the 
mixture as a whole, and the distribution of values of the composition of individual 
samples around the mean would be a binomial or equivalent distribution. Mixing 
is a random process and does not yield an orderly mixture, an important point fi rst 
stated by Lacey [2].

Although a number of workers were introducing the concepts of statistical analysis for 
the description of simple mixing at the same time, Beaudry was the fi rst to quantify 
these ideas [3].

Consider a sample selected randomly from the entire mixture. This sample will be small 
compared to the total mixer volume but will contain n particles, where n is a suffi ciently 
large number to treat statistically. The problem of sample size and sampling errors is 
a standard problem in experimental design [4] and need not be discussed here. If the 
mixture contains two components, say black and white particles, then let p equal the 
fraction of white particles in the entire mixture. If the quantities of materials charged 
to the blender are known, then p is known. Then the probability P that a randomly 
selected sample has exactly x white particles out of a total of n particles is given by the 
binomial distribution [4-7]:

 
P

x

n

�

�
�

�

�
� = n!/ x!(n 	 x)!( ) px (1	 p)n	x

 (2.1)

The average value of the concentration for a suffi ciently large number of samples of 
suffi cient and equal size is the mean of the population and equals p. If there are r samples, 
where r is a very large number, then the variance of the mixture is given by:

 
2 = p(1-p)/r (2.2)

which is a measure of how the concentration can be expected to differ from the mean 
value.
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Because only whole particles are in the sample, the measured values of concentration 
can only assume discrete values. The binomial distribution is a discrete-valued function 
and can therefore properly describe the sample composition. However, with the large 
number of sample particles, calculations using a discrete function can become tedious. 
If the conditions:

 p < 0.5 (2.3)

and 

 rp > 5 (2.4)

are met, which defi ne what is meant by a suffi ciently large number of samples, then the 
distribution can be treated as continuous to a good approximation and the Gaussian 
distribution results:

 

f
x

n

�

�
�
�

�
� =

1

� 2�( )1/2
exp �1 / 2

x
n
� p

�

�
�

�

�
�

2

/ �2
�

�
�
�

�

�
�
�

 (2.5)

where f is the probability that a sample has composition x/n. If the fraction of the 
component of interest p is small, then a better approximation to the binomial distribution 
is given by the Poisson distribution [4, 5]:

 
f

x
n

�

�
�

�

�
� = e	mmx / x!

 (2.6)

where m = np.

In practice, a limited number of samples, each with a different number of particles, is 
counted. Then if r is the number of samples measured, the mean value of the sample 
concentration can be calculated:

 

x
n

�

�
�

�

�
� =

x
n

�

�
�

�

�
�

i=1

r

�
i

/ r

 (2.7)

where (x/n)i is the measured particle fraction of the component of interest in sample i. 
the variance of the sample can be calculated:

 

s2 =
x
n

�

�
�
�

�
�

i

�
x
n

�

�
�

�

�
�

�

�
��

�

�
��

2

/ r �1( )
i=1

r

	
 (2.8)

or equivalently:
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s2 = r
x
n

�

�


�

�
�

2

�
x
n

�

�


�

�
�

ii=1

r

�
�

�


�

�
�

2

i=1

r

�
�

�

�
�

	




�
�
/ r �1( )

 (2.9)

The calculated values of the sample mean and variance can be used in two ways. As will 
be discussed in Section 2.2, the variance can be used to characterise the state of mixing for 
kinetic calculations. But fi rst, this information can be used to answer the important question 
of how closely do the samples represent the mixture as a whole. The concentrations in 
individual samples would be expected to vary because of the random nature of the mixture, 
because of random sampling errors and because of random errors in measurement. The 
actual mean and variance of the population as a whole, that is the entire mixture, are 
unknown so some estimate must be made as to whether or not the measured values 
are those expected from samples taken from a random mixture. Statistical tests using 
confi dence limits are used for this purpose. A related problem is to decide whether or not 
two mixtures with different measured values of the mean and variance can be considered 
to the same or different, for which purpose signifi cance tests may be used.

2.1.1 Confi dence Limits

Confi dence limits express quantitatively the percentage of times the true but unknown 
values of the population mean or variance, that is the values of the complete mixture, 
will lie within a range of values based upon estimates made from a limited number of 
sample measurements. For example, using the Student’s t-Test described below, the 
measured value of the average sample composition can be used to make a statement such 
as ‘nineteen times out of twenty, the true mean composition of the batch will be between 
26% and 32% carbon black’. Information of this type is used for calculations in processes 
downstream from the blending operation where there may be a limit on the maximum, 
minimum or range of compositions which will yield a satisfactory product.

a. Confi dence Limits for the Mean 

From the mean and variance calculated for r samples from Equations (2.7), (2.8) and 
(2.9), the confi dence limits of the population mean are calculated: 

  
p =

x
n

�

�
�

�

�
�± ts / r1/2

 (2.10) 

where p is the population mean. Values of t are tabulated in standard references [4, 
8]. For the desired confi dence limits, usually 95% certainty, the value of t for the r-1 
degrees of freedom are found in the appropriate table and substituted into equation 
(2.10), as shown in Example 1. 
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b. Confi dence Limits for the Variance

Chi-squared (x2) tables [4, 8] are used to calculate the confi dence limits for the population 
variance in a similar manner. For r-1 degrees of freedom, two values are found in the 
table. First the value x1

2 is found which is so small that anything less than that would 
occur less than 2.5% of the time. Secondly, the value x2

2 is found which is so large that 
any value greater than that will occur less than 2.5% of the time. These correspond 
to probabilities P = 0.025 and 0.975, respectively. Then the chi-squared values will be 
within these limits 95% of the time and the population variance can be estimated:

 

rs2

x2
2

< �2 <
rs2

x1
2

 (2.11)

as shown in Example 2. In addition to placing limits on the values of the mean and 
variance of the mixture as a whole, confi dence limits test can be used to describe blender 
effi ciency as presented in a later section.

2.1.2 Signifi cance Tests

Signifi cance tests express quantitatively whether or not the set of samples has the same 
characteristics as some reference material. This reference material may be the composition 
required for processing downstream for quality control purposes in preparing new 
batches. The reference material may be a hypothetical perfectly random mixture 
having the same overall composition as the sample, or the reference material may be a 
laboratory-mixed sample when scaling large-size equipment.

Each of the signifi cance tests is a ‘null hypothesis’ test. First it is postulated that the 
reference and the sample material have exactly the same composition. Then a parameter 
is calculated based on the values of the mean and variance of the sample and on the 
known values of the reference. The calculated parameter is compared to tabulated values 
for the desired level of signifi cance. If the values of the parameter are within prescribed 
limits, the difference in values of the mean or variance from sample to reference cannot 
be considered statistically signifi cant.

a. Signifi cance of the Mean Test (Student’s t-Test)

The sample mean and variance are calculated using Equations (2.7) and (2.8) or (2.9). 
Rearranging Equation (2.10), the value of t may be calculated:
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t =

x
x

�

�
�

�

�
� 	 m

s / r1/2

 (2.12)

where m is the mean value of the reference material. The calculated value of t is 
compared to tabulated values corresponding to r-1 degrees of freedom and the desired 
level of signifi cance, which is usually 5%. The calculated t will exceed the tabulated 
value by chance only 5% of the time if the reference and sample mixtures are the same 
(Example 3).

b. Signifi cance of the Variance (F-test)

The variance of the reference material sr
2 and the sample material ss

2 are calculated 
using Equations (2.8) or (2.9), and the F value is calculated:

 
F = ss

2 / sr
2

 (2.13)

Tabulated values of F will determine if this large a value of F can occur by chance alone 
with the required degree of signifi cance if the two batches are the same.

c. Signifi cance of the Distribution (�2-test). 

In this calculation, let mi be the measured frequency that a value (x/n)i is observed in 
a set of random samples. The expected value of the frequency for a randomly mixed 
material fi is given by Equations (2.1), (2.5) or (2.6). Then the chi-square value can be 
calculated:

  
�2 = mi � fi( )2 / fi

i=1

k

�
 (2.14)

where k is the number of pairs of observed and expected frequencies. The calculated 
chi-square value can be compared to tabulated values for k-l degrees of freedom to 
determine if the differences in distributions of values can occur by chance at the desired 
level of statistical signifi cance (Example 4).

The use of these types of tests in a blending problem involving a master batch is shown 
in Example 5.

Although the statistical calculations are simple to perform, they often become tedious, 
especially in quality control work where rapid answers are often needed from semi-
skilled operators. Especially in the case of powder blending treated in this chapter where 
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later operations can smooth fl uctuations by back-mixing, a simpler method is available. 
A relative frequency histogram of the standard batch can be prepared on an acetate 
transparency. The histogram of new batches can be plotted on graph paper to the same 
scale by the quality control operator. An overlay of the transparency will quickly show 
if there are signifi cant differences between the sample and the standard.

EXAMPLE 1: Confi dence of the Mean Test

A shipment of 1,000 25 kg sacks of ethylene-propylene rubber (EPR) carbon black 
masterbatch granules has been received. These bags will be blended with virgin 
polyethylene (PE) chips to give a 10 wt% carbon black loading (Example 5). It is 
necessary to know the masterbatch composition in order to plan the ratio of masterbatch 
bags to virgin material bags in blending for subsequent processes. Ten bags were opened 
at random and a hundred pellets were dipped from the centre of each bag. The average 
carbon black loadings for each sample of a hundred pellets are:

Bag Carbon Black loading (100 x/n)
1 29.8

2 31.6

3 35.0

4 21.0

5 30.0

6 29.7

7 30.3

8 31.3

9 30.9

10 45.1

What is the composition of the entire shipment if it is truly random mixture?

Solution: The average composition of the ten samples is:

 
100

x
n

�

�
�

�

�
� =

x
n

�

�
�

�

�
�

i

/ r
i=1

10

�

= (29.8 + 31.6 + ... + 45.1)/10

= 314.7/10

= 31.5

The variance of the composition of the ten samples is:
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s2 =
x
n

�

�
�
�

�
	

i

�
x
n

�

�
�

�

�
	

�

�
��

�

�
		

2

/ r �1( )
i=1

10

�

  

29.8	 31.5( )2
+ 31.6 	 31.5( )2

+…+ 45.1	31.5( )2

9

= 317.69/9

= 35.2

s = (s2)1/2

= 5.93

Using the tabulated values of t for a 95% confi dence limit and 9 degrees of freedom:

T = 2.262

 
p =

x
n

�

�
�

�

�
�± ts / r1/2

 
= 31.5±

2.262( ) 5.93( )
101/2

= 31.5 ± 4.3

Thus 95% of the time the composition of the shipment lies between 27.2% to 35.8% 
carbon black. This information will be used in Example 5.

EXAMPLE 2: Confi dence of the Variance Test

For the samples given in Example 1, what range of values can the true population 
variance assume?

Solution: Using the tabulated �2-values for 95% confi dence and 9 degrees of freedom:

 

�1
2 = 2.70

�2
2 = 19.0

rs2

�2
2

< �2 <
rs2

�1
2

(10)(35.2)
19.0

< �2 <
(10)(35.2)

2.70
18.5 < �2 < 130

In defi nitions of the degree of mixedness in the next section, the variance is used. It will 
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be necessary to decide whether changes in the value of the variance will be due to the 
random nature of a mixture or whether the changes are caused by a change in the state of 
the mixture. The range of population variance calculated here will aid in that analysis.

EXAMPLE 3: Signifi cance of the Mean Test

In the laboratory product development, a well-mixed masterbatch with a mean 
composition of 30.0% carbon black with a standard deviation a = ±5% was used in 
formulating the test specimens. Careful analysis of the trial masterbatch showed that 
the composition of random samples conformed closely to the normal distribution. Is the 
composition of the new shipment reported in Example 1 the same as the composition 
of the test masterbatch?

Solution: Using the Student’s t-Test:

 

t =

x
n

�

�
�

�

�
� 	 m

s / r1/2

=
31.5	 30.0
5.93 / (10)1/2

= 0.80

This value of t corresponds approximately to the tabulated value for 9 degrees of freedom 
and a 45% confi dence limit. This means that the new shipment has about a 50% chance 
of having a different composition from the laboratory batch. Consequently, the ratio of 
masterbatch to virgin chips in the blend will have to be different for this material from 
the ratio used in the laboratory trials (See Example 5).

EXAMPLE 4: Signifi cance of the Distribution Test

F-test: for the laboratory batch, sr
2 � 
r

2

 

sp
2 = 25

ss
2 = 35.2

F = ss
2 / sr

2

= 35.2 / 25

= 1.41

This F-value is less than the tabulated value which means that the new shipment has 
essentially the same distribution around its mean value as did the laboratory material.
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EXAMPLE 5: Calculation of Blending Ratios

In addition to quality control applications in Examples 3 and 5, the statistical description 
of the masterbatch shipment is used in product formulation. The masterbatch shipment 
described in Example 1 is to be blended with virgin PE chips to give a 10 wt% carbon 
black loading. Because of contractual specifi cations with the customer, there must be at 
least 10% carbon black in 97.5% of the blended samples. The problem is to calculate 
the proportion of masterbatch required.

Solution: Let

M = weight fraction of masterbatch (MB)

P = weight fraction of carbon black in MB

 = 
 

x
n

�

�
�

�

�
�± ts / r1/2

pM = weight fraction of carbon black in blend

M(p-(ts/r1/2)) = 0.10

0.272M = 0.10

M = 0.10/0.272

 = 0.36

If the concentration in the masterbatch was uniformly equal to the average:

M = 0.10/0.315

 = 0.32

If the mean concentration in the shipment was the same as in the laboratory tests:

M = 0.10/0.257

 = 0.39

Thus the uncertainty in the concentration of the shipment means that 12% more 
masterbatch must be used than would be the case if the concentration was uniform. 
However, because the new shipment has a higher average carbon black loading than the 
laboratory material, approximately 7% less masterbatch is required than in the trials.

2.2 Defi nitions of Mixedness

Some of the earliest attempts to quantify the degree of mixing were made in the 1930s 
by Oyami [7, 9]. After attempts to rationalise empirical data on the kinetics of powder 
blending by qualitative appeals to statistical ideas [10, 11], the concept of the degree of 
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mixing was put on a fi rm quantitative base by Beaudry [3]. Essentially all subsequent 
defi nitions have been based on a combination of Oyama’s and Beaudry’s concepts.

Oyama measured the spatial variation of light absorption across the face of a cylinder 
containing clear and black particles [7]. The maximum differences in absorption between 
any two locations at the beginning of the test and after various mixing times were 
measured. Then the degree of mixing (DM) was defi ned by:

  
DM = 1�

�i max, t
�i max,0

 (2.15)

where �imax is the maximum difference in light absorption measured at times t and 0 . 
The idea of expressing the degree of mixing as a linear function of some measured or 
calculated property of the mixture has been used by most subsequent authors.

Beaudry [3] was the fi rst to use the quantitative results of the statistics of random 
sampling to describe blending. The variance among batches before blending sb

2 and 
after blending sx

2 were calculated using a variation of Equation (2.9):

  
s2 =

Ci
2�

r
�C2

 (2.16)

Where Ci is the value of the measured property (particle count, colour, composition, 
etc.) of the ith batch and c is the average value for all batches. The value of the variance 
for a theoretically perfectly random mixture sp

2 was calculated from the normal 
distribution having the same overall average composition. Then the limited blending 
ratio � is calculated:

 
� = sb

2 / sp
2

 (2.17)

and the blending effi ciency (BE) for any operation is calculated:

  
BE =

sb
2

sx
2

�

�
��

�

�
��actual	1

� 	1
�100%

 (2.18)

This can be seen to be an extension of Oyama’s linear function principle where the 
statistical distribution of a measured property is used rather than the property itself.

Lacey [2] initially used the standard deviation of the samples as a measure of mixedness:

 
DM = s = p 1	 p( ) / n( )1/2

 (2.19)
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where p is the average composition of n samples. Later he suggested a linear function 
of the variance [12]:

 
DM =

so
2 	 s2

so
2 	 sr

2

 (2.20)

where so
2 is the theoretical variance for a completely unmixed material, so

2 = p(1-p), and 
sr

2 is the theoretical variance for perfect mixing, sr
2 = p(1-p)/n, where the composition p 

is known from the amounts of materials charged and the sample variance s2 is calculated 
from the measured samples. It can readily be seen that the defi nition of the degree of 
mixing is essentially the same as the blending effi ciency defi ned by Beaudry.

Michaels and Puzinowskas [13] defi ned a uniformity index IV:

 
Iv = Dv / Dvo

 (2.21)

where:

 
Dv = Ci �Cav( )2

/ nCav
i=1

n

�
�

�
�

�

�
	

1/2

 (2.22)

and

 
Dvo = 1	 Cav( ) / Cav( )1/2

 (2.23)

The uniformity index, which is similar to Danckwerts Intensity Factor [1], varies from 
1.0 for unmixed materials to 0 for a completely randomly mixed material.

Weidenbaum and Bonilla [14] used chi-squared as a measure of mixedness and assigned 
qualitative meaning to the relative frequency of �2:

If P(�2) equals Designate mixture as
<0.1 Very poor

0.1 – 0.3 Poor
0.3 – 0.7 Fair
0.7 – 0.9 Good

>0.9 Excellent

They also suggested as an alternative degree of mixing:

 DM = 
/s (2.24)

Where 
 and s are the standard deviations of perfectly mixed material and the actual 
samples.
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Smith [15] used a similar defi nition:

 DM = 
o/s (2.25)

Where: 


o = (p(1-p))1/2

Eustik [16] considered the mixing of particles of granular material with a known size 
distribution and interpreted his results in terms of a standard deviation. Adams and 
Baker [5] considered the problem of mixing a small amount of masterbatch with large 
amounts of polymer using a Poisson distribution rather than a Gaussian distribution.

Of the various defi nitions of mixedness, either the variance of the measured property of the 
material or a linear function of the variance (Equations (2.18) or (2.20)) have proven the 
most useful, in describing the effi ciency of a mixing operation or the kinetics of mixing.

2.3 The Kinetics of Simple Mixing

In principle any one of the listed criteria of mixedness or the mean or standard deviation 
of the mixture could be used to establish the kinetics of a mixing operation. The 
appropriate mixing measure is plotted as a function of the mixing time. The curve is 
used directly as an evaluation of the kinetics of mixing or it is analysed using a model 
for the mixing process.

In a study of various tumble blenders, Weidenbaum and Bonilla [14] calculated the 
standard deviations of samples taken at various mixing times. As shown in Figure 2.2, 
the sample standard deviation decreased to the value expected for a random sample. At 
long mixing times, the standard deviation increased because of axial segregation caused 
by geometrical differences in the particles. Even with the same tumbler and the same 
particles, the curve in Figure 2.2A would be shifted up or down with a change in the 
mean concentration which would change the standard deviation of the randomly mixed 
sample. To overcome this problem, the degree of mixing can be used:

 DM = 
/s  (2.24)

In this case, the curve rises asymptotically to a value 1.0 before decreasing again at 
longer times if the mixture achieves a random distribution. In some cases, the mixing 
process may not reach a random distribution but the standard deviation will still reach 
an asymptotic value. This may occur in tumble blending of particles with a large density 
difference where there may be a tendency to segregate particles vertically by density. In 
this case, the asymptotic value may be used to normalise the degree of mixing. 

For a number of materials and blenders, it was found that the kinetics of mixing could 
be described by the equation:
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Figure 2.2. The kinetics of tumbler mixers



20

Mixing of Rubber

 

d � / s( )
dt

= �k
�
s

�

�
�

�
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�

eq

	
�
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�

�
�

�

�
��

�

�
��

 (2.26)

where 
 

�
s

�

�
�

�

�
�

eq
 = 1.0 for a random mixture. This states that blending is a linear rate process 

and k� is a measure of how good a mixer is. Integration of the rate expression yields:
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�
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�
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 (2.27)

For a simple mixing in tumble blenders, the rate of mixing was linear in the degree of 
mixing.

Earlier Brothman and co-workers [10] considered the surface area separating particles of 
different types as an appropriate measure of mixing. This could be recast as a probability 
problem as well.

Let:      Sp = maximum surface of separation

 yt = fraction of area developed in time t

 Zt = 1 – yt

 � = measure of the kinetics of mixing.

Then using a fi nite difference formulation for the rate of area generation:

  
yt+1 = yt + �(1	 yt)

 (2.28)

This is a fi nite difference formulation of a linear rate expression equivalent to Equation 
(2.26).

 Zt+1 = zt(1 – �) (2.29)

 Zt = zo(1 – �)t (2.30)

 Zo = 1 – yo � 1 (2.31)

 Zt = (1 – �)t (2.32)

 1 – yt = (1 – �)t 

 = etlog(1 – �) (2.33)

 yt = 1 – e–tc (2.34)

where:

 c = log (1/(1 – �)) (2.35)
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Then let Ui = probability that a random element has a surface exposed to an interface

 Ui = k �Si (2.36)

where:

 �S = S/n

 S = total interfacial area with n units

 Pn = probability that a cubic element has at least one surface exposed to an interface 
separating two kinds of particles

 Pn = 1 – e–ks

 = 1 – e–ks p (1 – e–tc) (2.37)

 = Pt

If samples are taken at two times, kSp and c can be evaluated and the mixing time 
required to achieve a desired degree of mixing can be calculated as in Example 6. Then 
the time required to obtain a desired level of mixing can be calculated:

  
Pt,E = 1	 exp 	kSp 1	 e	tc( )( )( )

v /vo

 (2.38)

where:

 vo = sample volume

 v = V/x = number of units of volume with at least one particle of minor 
component

 x = number of particles of minor component in volume v

Maitra and Coulson [11] reached the same equations as Brothman et al. using an 
argument based upon a diffusion analogue.

Beaudry [3] considered the problem of continuous blenders. Considering any property such 
as the concentration of component A in a mixture which is different between the batches 
which are to be blended. Then the variance can be used as a measure of mixing.

Let:

 vb = variance of property between batches

 vx = variance of samples in blender outlet

 D = blender volume/batch volume

 xo = concentration in blender at start of batch 1

 x = concentration in blender at time t

 cn = concentration of batch n
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Then a balance of component A in the blender yields:

 Ddx = c1 dV - x dv (2.39)

for the fi rst batch where:

 dv = volume increment

 dx = concentration increment

 
ln

c1 	 xo

c1 	 x1

�

�
�

�

�
� =

1
D

 (2.40)

 x1 = (1 – K)c1 + Kxo (2.41)

where:

 K = e-1/D

A similar balance for blending the nth batch yields:

 xn = (1 – K)cn + Kxn-1

Then the variance can be calculated:

 vp = vb(1 – K)2 + vqK2 (2.42)

where:

 vp = variance for xn

 vq = variance for xn-1

 vp =~ vq

  

vb

vp

=
1+ K
1	 K

 (2.43)

If there is fi rst infl ow, then blending, then outfl ow, the expression for K becomes:

 K = (D – 1)/D (2.44)

For intermittent infl ow and continuous outfl ow, the expression becomes:

  
K =

sD
sD 	 s 	1

�

�
�

�

�
�

	s/(s	1)

 (2.45)

where:

 s = infl ow rate/outfl ow rate

A blending effi ciency can be defi ned as:
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BE =
vb

vp

�

�
��

�

�
��

actual

	1
�

�

�
�

�

�

�
�

100
� 	1

 (2.46)

where:

  

� =
vb

vp

�

�
��

�

�
��

ideal

And � is independent of actual blender design. In comparing modes of operation, 
continuous fl ow gives the best blending; intermittent infl ow and continuous outfl ow is 
second best, and alternate fl ow gives the least effi cient blending. An example of these 
equations is given in Example 7.

EXAMPLE 6: Kinetics of Tumble Blending

Three hundred pounds of carbon black masterbatch are tumbled with fi ve hundred 
pounds of virgin PE chips. After 10 turns and 20 turns of the blender, a number of 
samples are extracted at random from the blender. The data yielded:

t = 10 turns , p = 0.2

t = 20 turns , p = 0.865

where p is the probability that a sample with a volume of one cubic centimetre contained 
at least ten milligrams of carbon black. Then to calculate the number of turns required 
to ensure that at least 95% of the samples have at least 10 milligrams of carbon black 
per cubic centimetre:

 0.2 = 1 – exp (-ksp(1 – e-10c))

 0.865 = 1 – exp (–ksp(1 – e-20c))

 
ksp = ln

1
1	 0.2

�

�
�

�

�
� / 1	 e	10c( ) = ln

1
1	 0.865

�

�
�

�

�
� / 1	 e	20c( )

c = –0.2075

ksp = 0.1245

vo = 1 cm3

 p = 0.9 g/cm3

 c = 0.3151 b carbon black/lb MB

 
v =

(800 lb)(454 g / lb)(cm3 / 0.9 g)
(300 lb)(0.315 lb/lb)(4.54 �  105 mg/lb)

= 9.4x10-3 cm3/mg carbon black
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Substitute into Equation (2.38):

 0.95 = 1 –(e0.1245(1- exp(.2075t)))(9.4x10-3/1)

 t = 38 turns

EXAMPLE 7: Calculation of Blending Effi ciency

In a viscose plant, the caustic concentrations in 30 batches were measured. The batches 
were then blended in a tank having a volume three times a batch volume and the 
concentration of 30 samples were measured. The average concentration in both batches 
and blends was the same but the variance differed:

  c  = 6.5% caustic

 vb = 0.0026

 vp = 0.0010

 D = 3

 � = (vb/vp)ideal

 = (1 + e–1/D)/(1 – e–1/D)

 = 6.1

 (vb/vp)actual = 2.6

 BE = (2.6 - 1)/(6.1 - 1) x 100%

 = 31.4% effi ciency

After an alteration to the blender to improve performance, the results were:

 vb = 0.0028

 vp = 0.0006

 (vb/vp)actual = 4.66

 BE = (4.66 – 1)/(6.1 – 1) x 100%

 = 71.8%

2.4 Multicomponent Mixtures and Markov Chains

The statistical description of mixing presented in the previous sections is valid for 
bicomponent mixtures or where one component is isolated in a multicomponent mixture, 
all other components being considered as a single entity. The description of mixing for 
a bicomponent system can be generalised to describe multicomponent systems by using 
Markov chains [17].

Simple mixing can be considered as a stochastic process, that is, a random phenomenon 
which changes with time [4, 18]. Let Xt be a set of random variables at time t. For 
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example, Xt might be the composition of one component in a mixture or the number 
of particles in a sample. Then the process is a Markov process if given Xt, the value Xa 
where a > t does not depend on any Xb where b<t . In other words, the future state of 
the system depends only upon the present state of the system and it does not depend 
upon any earlier states of the system [18]. The formal description of a Markov chain 
can be formulated.

Suppose that for a sequence of experiments only one of a fi nite set of mutually exclusive 
events is observed. Then let sj be one of these events. The set:

 s = (s1, s2, ...., sj)  (2.47)

is called the state space and when event sj occurs, the system is said to be in state sj. If 
at time t = NT the state of the system is sj, then the value of the system is written as:

 sj : Xt=N� = j  (2.48a)

or equivalently:

 sj : XN = j (j = 1, 2, ...) (2.48b)

A sequence of random variables:

 x1, x2, ..., xN

is said to be a Markov chain if for a sequence of integers:

 N1 < N2 < ... < Nr < N

then the probability that the value of the Nth event is xN is given by:

 P(XN|XN1 , XN2, ... XNr) = P(XN|XNr) (2.49)

If the possible values of XN are denumerable, then:

  
P XN+1 = i | XN = j( ) = Pij

(N) i, j = 1,2,…
 (2.50)

If the probability 
 
Pij

(N) is independent of time N, then the Markov chain is 
homogeneous:

 P(XN+1 = i|XN = j) = pij = constant  (2.51)

In general this is not the case and:

 
P XN+M = i | XN = j( ) = Pij

(M)

 (2.52)

which depends upon the time interval M.



26

Mixing of Rubber

From the defi nition of the probabilities pij:

  
Pij

(O) = �i j
 (2.53)

where:

 �ij = 1 , i = j

 �ij = 0 , i � j

Consider the mixer to be divided into a fi nite number of cells 1, 2, ...,w and let 
 
Pij

(M) be 
the probability of transition of the number of particles from cell i (state i) at time NT 
to cell j (state j) at time (M+N)� for any M. Then:

   

Pij
(M) = P XM+N = i | XM+N�1 = in�1( )� …P XN+2 = i2 | XN+1 = i1( )

P XN+1 = i | XN = j( )( )
= Piim�1

Pim�1im�2
…Pi2i1

Pi1j
i1,i2 ,…in�1

�
 (2.54)

For a homogeneous Markov chain where the probabilities Pij are constant:

  
Pij

(M) = PikPkj
(M�1)

k

�
 (2.55)

Let the transition probability matrix P be given by:

 P = |pij| (2.56)

where the i - j element of the matrix is the probability Pij. Then for a homogeneous chain:

 P(M) ; PM (2.57a)

 P(M+N) = PMPN (2.57b)

Let ni be the number of particles in cell i and

  
n = ni

i=1

w

�
 (2.58)

is the total number of particles. If the particles are not pulverised or agglomerated, 
then n is a constant. Let the fraction of particles �j, in cell j at a certain time which are 
eventually, found in cell k �k, after a time � can be described as a one-step transition:

 
Pkj

(N) = P(XN = �k | XN	1 = �j) = Pkj
 (2.59)
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Pkj = 1 and 0 < Pkj < 1

j=1

w

�
 (2.60)

This states that even though N steps in the fundamental mixing process may have 
occurred, it may be treated as a single step in a different time scale. This is particularly 
important where the process is measured as a function of a variable such as the number 
of turns in a blender, which may not bear any direct relationship to the basic particle 
dynamics.

Suppose there is a system containing r components which have identical properties 
except colour. Let the number of particles of colour j in cell i be mij. Then the total 
number of particles in cell i is:

  
ni = mij i = 1,…w

j=1

r

�
 (2.61)

The total number of j-component particles in the mixer mj is:

 
mj = mij

i=1

w

�
 (2.62)

The total number of particles is:

 
n = ni

i=1

w

� = mj
j=1

r

� � mij
j=1

r

�
i=1

w

�
 (2.63)

For perfect mixing, the number concentration throughout the mixer will be essentially 
uniform:

 (cj)� = mj/n (2.64)

Let ckj(N) be the concentration of component j in cell k at time t = N�. Then:

  

lim

N ��
ckj(N) = (cj)�

 (2.65)

if the mixing is a random process. If the mixing can be described by the fi rst-order 
Markov process presented above, the number of particles of component i moving from 
cell j to cell k during time � is given by:

 Qj�k(i) = Pkjmji i = 1, ... r; k � j; k,j = 1, ... w (2.66)

Qj�j(i) is the number of particles remaining in cell j and
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 Qj�j(i) = Pjjmji (2.67)

The fl ow of particles of all components from cell j to k is given by:

  
Qj�k = Qj�k(i) = Pkj

i=1

r

� mji = Pkj
i=1

r

� nj

 (2.68)

Then:

  
mij

(N) = Pi�
(N)m

�j(0)
p=1

w

�
 (2.69)

where 
 
mij

(N) is the number of particles of component j in cell i at time N� after the start 
of mixing. The number fraction of component j in cell i is:

 

cij(N) =
mij(N)

ni

=
1
ni

Pij
(N)mij(0)

i=1

w

�
 (2.70)

and

 

ni = Qj�i
j=1

w

�

= Pij
(N)nj

j=1

w

�
 (2.71)

Divide both sides of equation (2.71) by the total number of particles to obtain:

  
�i = Pij

(N)�j
j=1

w

�
 (2.72)

where �i is the number fraction of particles in cell i and

 
�i = 1

i=1

w

�
 (2.73)

Then the particle number balance for component j after N transition steps becomes:

 
mj = cij(N)ni

i=1

w

� = cij(0)ni
i=1

w

� = constant

 (2.74)
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Substituting back into Equation (2.70) yields:

  
cij(N) =

1
�i

Pi�
(N)�

�
c

�j(0)
i=1

w

�
 (2.75)

  
c

�j (0) = m
�j (0) / n

�

 (2.76)

In matrix notation, this expression becomes:

 C(N) = �-1 P(N) � C(0) (2.77)

Given the initial concentration distribution and the transition matrix, the concentration 
distribution at any time N� can be calculated. Once the distribution is known, the 
variance can be calculated:

 
�N

2 =
1
r

�i cij(N)� cj�( )2

i=1

w

�
j=1

r

�
 (2.78)

and

  
cij(N) =

cj�

�i

Pi�
(N)q

�j(0)
�=1

w

�
 (2.79)

where:

  
q

�j(0) = m
�j(0) / mj

 (2.80)

At the beginning of the mixing process, N = 0 and

   
�o

2 =
1
r

(cj�)2

i=1

w

�
j=1

r

� �i

1
�i

Pi�
(N)q

�j(0)�1
�=1

w

�
�

�
	




�
�

 (2.81)

and a degree of mixing can be defi ned:

  
DM = 1	

�N
2

�o
2

 (2.82)

This result is a generalisation of the equations derived for a bicomponent mixture [19]. 
Mixing of a bicomponent system can be used to determine the transition probability 
matrix for a mixing system and these results used to describe multicomponent 
systems.
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2.5 Mixing Equipment

The machinery used to achieve particulate blending can be divided into three classes, 
depending upon the primary method used to achieve particle motion:

1.  Tumble blenders

2.  Blade mixers, and

3.  Air mixers

In tumble mixers, particle motion is generated by rotating the walls of the container in 
such a way as to cause layers of particles to tumble over one another under the infl uence 
of gravity. Blade mixers rely upon positive displacement of the particles by a moving 
screw or blade combined with random tumbling of the particles. Air mixers rely upon 
the random motion of particles in a turbulent air stream or in free-fall trajectories in 
chutes.

2.5.1 Tumble Blenders

Tumble blenders are the most common mixers used for batch mixing of particulate 
solids. The main difference among mixers in this class is in the geometry of the mixer. 
Several common shapes are shown in Figure 2.3.

Coulson and Maitra [20] studied tumble blending in a drum mixer shown schematically 
in Figure 2.4. They found that the best mixing was obtained when the barrel axis was 
inclined at 14°. Faster mixing was obtained with smaller particles, but segregation 
(‘unmixing’) was a problem if the particles differed signifi cantly in either size or density. 
There was an optimum speed of rotation for rapid mixing when all other variables were 
constant and there was a maximum volume fraction of components in the mixer above 
which mixing did not occur.

The actual kinetics of mixing depend strongly upon the particle size and shape and the 
operating conditions. However, the general features have been reported many times. 
One particular problem in tumble blending, especially with rotation about a horizontal 
axis of symmetry is that there may be no end-to-end mixing. If there is no horizontal 
component to the particle velocity in the tumbling, mixing will be poor. Dividing the 
material as in the twin-shell tumbler was supposed to accomplish this but in general 
the mixing was poor without internal baffl es [5, 21] . In a comparison of a number of 
geometries of tumble blenders, Adams and Baker [5] found the best mixing was obtained 
with a rotating cube. Other geometries gave inferior results.

Tumble blenders are offered by many manufacturers in a wide range of capacities. A 
typical range is shown in Table 2.1 for a V-shaped blender manufactured by Moritz [22] 
and in Table 2.2 for a double-cone blender manufactured by Baker Perkins [23].
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The tumble blender has the advantages of low cost, simple construction and simple 
operation. Disadvantages are batch mixing with relatively small throughputs, slow 
operation and only moderate degrees of mixing. Whether or not tumble blenders will 
be satisfactory in a plant depends strongly upon whether the downstream processes 
are slow so that the slow throughput in batch blending is acceptable, and the mixing 
in downstream equipment is suffi ciently good so that the blender need only supply a 

Figure 2.3 Tumbler blender geometry
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Figure 2.4 Drum blender

Table 2.1 Capacity of V-shape tumble blender
Model Working capacity (ft3)
V10 1/3
V50 1-3/4
V100 3-1.2
V250 9
V500 18
V1000 36
V1500 54
V3000 108

Table 2.2 Double cone tumble blenders
Working Capacity Motor Horsepower Tumbler Speed (rpm)

(litres) (cubic feet)
29 1.0 ½ 40
71 2.5 ¾ 37
142 5.0 1 32
283 10.0 3 29
707 25.0 7 ½ 24
1415 50.0 15 21
2122 75.0 20 19
2930 100.0 30 18
4245 150.0 50 17
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constant time-average concentration. If the downstream processes cannot eliminate the 
spatial gradients from a tumble blender, then another method must be used.

2.5.2 Blade Mixers

Blade mixers attempt to overcome the diffi culties inherent in the free motion of tumble 
blenders by using the positive displacement of a rotating blade. The motion of the blade 
sweeps particles past one another.

Blade mixers can be subdivided into two groups according to the general geometry of the 
mixer. The fi rst class of mixers is trough mixers, as shown schematically in Figure 2.5. 
A horizontal tank, usually U-shaped in cross-section, holds a shaft with blades which 
is driven by a motor mounted at one end. The rotation of the shaft moves the particles 
around the circumference of the walls by the positive displacement of the blade until 
the force of gravity pulls the particle back towards the shaft. Mixing is achieved by this 
random cascade of particles combined with any axial motion imparted by the blade. 
Sigma and Z-blade mixers are trough mixers which have robust blades and large motors 
for handling highly viscous, tough or doughy materials rather than for particle blending. 
Ribbon blenders are usually used for particulates.

The main difference in equipment supplied by manufacturers is in the design of various 
blades. Three typical shapes are shown in Figure 2.6. Equipment can be ordered with 
pneumatic or screw feeding and discharge and with dust extraction facilities. Batch 
operation can be with hand loading and a drop chute discharge. Ribbon blenders can 
also be designed to operate continuously. A large range of mixer capacities is available, 
as shown in the summary of product lines for three manufacturers in Tables 2.3 - 2.5 
[24-26].

Figure 2.5 Trough blender
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Figure 2.6 Ribbon blender blades
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Table 2.3 Winkworth ribbon blade mixers
Model Working Capacity Motor Horsepower

(litres) (ft3)
Standard Ribbon Blade

FU60 5400 200 20-40

FU48 3400 120 15-30

FU45 2250 75 15-25

FU32 1170 42 12½ -20

FU27 675 25 7½ -15

FU22 450 16 5-10

FU18/5 290 10½ 5-7½ 

FU18 205 7½ 5-7½ 

FU13 90 3¼ 2

FU 9 28 1 1

Interrupted Spiral Blade

GU22 450 16 5½ 

GU18 225 7½ 3

GU13 90 3 2

GU 9 20 2/3 ½ 

Table 2.4 Battaggion ribbon mixers
Model Capacity (litres) Speed (rpm) Motor Horsepower
ME50 50 65 2-3

ME100 100 48 3-5½ 

ME200 200 45 4-5½

ME300 300 42 5½ - 7½ 

ME500 500 42 7½ -10

ME800 800 38 10-15

ME1000 1000 38 10-15

ME1500 1500 38 15

ME2000 2000 32 20

ME3000 3000 25 30-60

ME5000 5000 22 40-60

ME8000 8000 20 50

ME10000 10000 18 50
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The second type of blade mixer relies upon a high-speed propeller which achieves rapid 
circulation by thrusting particles vertically from the blade into a turbulent stream. This 
method of mixing generates large amounts of heat, which makes it inappropriate for 
simple blending operations, although the method is widely used for making polyvinyl 
chloride (PVC) plastisols.

2.5.3 Air and Gravity Feed Mixers

The general class of air mixers covers a wide range of machinery types, each of which 
relies on the random trajectories of free falling particles or fl uidised beds.

One design of a batch blender is shown schematically in Figure 2.7. Particles are conveyed 
through a vertical pipe via a screw and then fall freely through the annular region in a 
recirculating motion. With the equipment marketed by Pari UK [27], the mixer has a 
capacity of 75 kg.

Bayer has developed a large fl uidised bed mixer which can operate continuously and has 
a capacity of 1000 cubic meters for large scale operations [28]. As seen in Figure 2.8, 
the basic geometry and particle motion are similar to the Pari mixer.

Several manufacturers offer a combination meterer-blender, as shown in Figure 2.9. In 
these mixers, controlled amounts of the components are metered into a chute by the 
controlled rotation of neoprene-covered rolls. The particles mix by random tumbling 

Table 2.5 Gardner pre-mixer
Machine Size Capacity (lb)
BB 30 

CC 60

DD 100

EE 150

FF 200

GG 300

HH 560

H 560

I 1120

J 1680

K 2240

L 3360

M 4480
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Figure 2.7 Rapid batch mixer
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Figure 2.8 Fluidised mixer
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Figure 2.9 Sisind meter blender
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through the chute into a collection hopper. The mix can then fl ow by gravity into 
the downstream process or it can be screw-conveyed. The mixer can be operated 
continuously to give feed rates up to 5000 pounds per hour to supply one or more 
processing machines.

2.5.4 Equipment Selection

It is diffi cult to provide general guidelines for the selection of particle blenders. If the 
mixing in downstream process equipment is good so that the blender is only required 
to provide a roughly constant time-average bulk concentration, the tumble blender is a 
rugged, simple machine. Of the various shapes available, the rotating cube is often the 
best shape. Particle segregation by size or density may be a problem.

Ribbon blenders offer superior mixing and the possibility of continuous operation 
compared with a tumble blender with the penalty of higher capital costs.

Pneumatic mixers can handle large quantities of material continuously but they require 
careful engineering design. The large mixers are generally suitable only for raw material 
suppliers who must handle tremendous quantities of granules from their polymer reactor 
lines.

Meter-blending hoppers offer continuous mixing of a similar quality to tumble blenders 
with a slightly greater capital cost, which may be offset by lower labour costs and easier 
handling.

2.6 Summary

In this chapter the statistical theory of mixing has been described. The variance of the 
distribution of concentrations in a random selection of samples is a useful measure 
of mixing process. A degree of mixing can be defi ned as the ratio of the variance of 
the samples to the variance of a perfectly random mixture having the same average 
concentration. A plot of the degree of mixing defi ned in this way against the mixing 
time gives a useful description of the kinetics of mixing. Generally, simple mixing can 
be described by a fi rst-order rate law:
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 (2.26)

This description of the mixing process does not require any knowledge of the particle 
kinematics or dynamics of the mixer.
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Simple statistical descriptions are possible with bicomponent mixtures. With 
multicomponent mixtures, the process can be described as a Markov chain. The transition 
probability matrix can be determined experimentally for a mixing operation and this 
can be used to describe the kinetics of mixing. The same statistical measures are used 
to describe other mixing operations treated in later chapters where the mechanics may 
be too complex for analytical model calculations.

A number of different particle blenders have been described; these include tumble 
blenders, ribbon blenders and pneumatic blenders. The particular choice of blending 
equipment depends strongly upon the characteristics of the downstream equipment so 
that no general guidelines are possible.
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The various processes required to make a multicomponent polymer-additive system 
homogeneous can be roughly divided into three types. Simple mixing, discussed in the 
previous chapter, yields spatial uniformity of the mixture, at least when the samples 
are viewed on a scale large compared to the size of an individual particle. This kind of 
mixing may require shear deformation of the polymer, but it does not necessarily occur, 
as seen for particle blending. Laminar shear mixing does require fl uid fl ow. As will be 
shown in Section 3.1, this kind of mixing changes the size of the basic fl uid element, 
the scale of mixing, by altering its shape in shear deformation [1]. The third type of 
mixing, dispersive mixing, changes the size of particles or agglomerates of particles by 
fracture or rupture due to the stresses generated during laminar mixing (Section 3.2). 
This chapter and Chapter 2 describe the basic mixing processes which are used in 
commercial mixers, as discussed in Chapters 2, 4-6. If any fl uid motion occurs, such as 
on mills or in internal mixers, all three fundamental processes occur simultaneously. The 
mixer geometry and operating conditions determine how effi cient a given unit may be 
in performing these three types of mixing. With particular materials and mixers, one of 
the three processes may be the rate-determining step in producing a satisfactory product, 
so that it is convenient to treat the processes separately but it should be remembered 
that these are parallel processes.

3.1 Laminar Shear Mixing

Chapter 2 considered the random rearrangement of particles throughout the system with 
no change in size of any individual particle; the scale of mixing rapidly approaches the 
dimension of a single pellet. To reduce the scale below this level, it is necessary to alter 
the size of the particles. If the mixture consists of rigid aggregates dispersed through a 
continuous rubber matrix, then shear stresses exerted on the particles may exceed its 
cohesive strength and the aggregate will break, as considered in the next section. If the 
disperse phase is deformable, as shown in Figure 3.1, the initial particle may change its 
shape without breakup when subjected to a shear fi eld. As the particles deform, their 
average thickness will decrease as the surface area increases at constant volume and the 
distance between particles will decrease. Consider two cubes which are initially placed 

Laminar and Dispersive Mixing

AuthorAuthor3



44

Mixing of Rubber

within a continuous matrix between parallel plates. As the top plate is moved in simple 
shear, each cube is deformed into a parallelpiped. Because the process occurs at constant 
volume, not only does the interfacial area of each cube increase in shear, but the distance 
decreases between similar faces on the two cubes parallel to the shear direction. A useful 
measure of the shear process is the striation thickness r which is the average shortest 
distance between a point of maximum concentration of one component and the nearest 
point of maximum concentration of the same component. For large deformations, the 
two cubes in the example become essentially sets of two parallel planes. Then the striation 
thickness is the distance between the midpoints of each pair of planes.

As the shear increases, the thickness of each layer becomes so small and the separation 
between layers becomes so short that the layers can no longer be resolved by whatever 
method of measurement is used. The mixture appears uniform on the scale of 
measurement. This means that the striation thickness is a useful measure of the scale of 
mixing for laminar shear systems such as rubber mixing.

One problem is to defi ne how short a distance between layers is required before 
the mixture can be considered to be uniformly mixed. This depends upon how the 
homogeneity of the mixture is measured. If the mixing problem is to mix black and 
white particles to form a grey product, the mixing can be measured in several ways. If 
the article is to be a disposable consumer item, then it is necessary for the grey colour to 
appear uniform as seen by the human eye. Any objects closer than 100 �m will appear as 
a single particle to the eye; the limit of resolution is of the order of 100 �m and a product 

Figure 3.1 Change in striation thickness with shear
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with a smaller scale of mixing will appear uniform to the unaided eye. If the same object 
is placed under an optical microscope where the resolution is of the order 1 - 10 �m, 
the object will now appear non-homogeneous with clumps of black particles randomly 
placed through a white matrix. Further mixing may reduce the particle size so that they 
can no longer be resolved in an optical microscope and the product appears uniformly 
mixed again. However, in an electron microscope where the resolution is of the order 
10 - 1000 Å, the product will appear lumpy again. The appearance of homogeneity in a 
mixture depends upon the relative size of the scale of mixing compared to the resolution 
of the method of measurement. As long as the scale is smaller than the resolution, the 
mixture will appear uniform. This enables one to place a quantitative criterion for the 
degree of mixing as the requirement that the scale of mixing be less than the resolution 
of the method of measurement.

3.1.1 Calculation of Striation Thickness

As the area of each cube in the example of Figure 3.1 increases, the striation thickness 
decreases [2-5] For a constant volume process:

 v – r A /2  (3.1)

where the total volume V is for a region enclosed by interfacial area A and having 
striation thickness r. The factor of two appears because each layer has two interfaces. 
The problem of laminar shear mixing is how to calculate the change in interfacial area, 
hence the striation thickness, for the shear fi eld in a given mixer geometry.

First consider an element of plane surface which passes through the origin of a Cartesian 
coordinate system as shown in Figure 3.2 [2, 4]. The orientation of the surface is specifi ed 
by two of the direction cosines of the normal to the surface and the magnitude of the 
normal is a measure of the area. Consider initially a unit of surface with the normal 
vector   

�

N:

  

�

N = cos�x î + cos�y ĵ + cos�zk̂
 (3.2)

 
cos2 �x + cos2 �y + cos2 �z = 1

 (3.3)

where cos �x, cos �y and cos �z are the direction cosines of the normal with respect to the 
rectangular coordinate system having unit vectors î, ĵ , k̂ in the X-, y- and z-directions.

Now consider the vectors formed by the intersection of the unit plane with the x-z plane 
(  
�
a) and the intersection of the unit plane with the y-z plane (  

�

b ). Then:

   
�
a = A1î + Oĵ + A3k̂

 (3.4)
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�

b = B1î + B2 ĵ + Ok̂
 (3.5)

where the constants A1, A3, B1, B2 are determined by the relationships:

  
�

Ni
�
a = 0

 (3.6)

  
�

Ni

�

b = 0
 (3.7)

  
�
a�
�

b =
�

N
 (3.8)

Substituting for   
�
a ,   
�

b  and   
�

N  results in:

  

�
a = cos�z / cos�x( )1/2( ) î + Oĵ 	 cos�x( )1/2

k̂
 (3.9) 

  

�

b = 	cos�y / cos�x( )1/2( ) î + cos�x( )1/2
ĵ + Ok̂

 (3.10)

If the system containing the reference plane is deformed, the displacement of a reference 
point (x,y,z) is d to the point (x�,y�, z�) after deformation. In uniform simple shear in 
the x-direction, the amount of shear � is:

  
� = �d / �y

 (3.11)

Figure 3.2 Coordinate system for shearing
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If the origin is not displaced then

 dx = �yî
 (3.12)

Vector   
�
a  remains unchanged by the deformation because it lies in the x-z plane which 

is undistorted by shear. The vector 
  
�

b  transforms as:

  

�

�b =
�

b + dx

=
�

b + �yî

= � cos�x( )1/2
	 cos�y / cos�x( )1/2( ) î + cos�x( )1/2

ĵ
 (3.13)

Then the area of the plane is given as:

  
�A =
�
�a �
�

�b
 (3.14)

Since the plane initially had unit area, the ratio becomes:

  

�A
A

=

�
�a �
�

�b

1

= 1	 2� cos�x cos�y + �2 cos2 �x( )1/2

 (3.15)

Because of the inverse relationship between area and striation thickness:

 

�r =
ro

1	 2� cos�x cos�y + �2 cos2 �x( )
1/2

 (3.16 )

which decreases with the increase in total shear �. In addition, Equation (3.15) shows 
that the change in area depends strongly on the orientation of the surface relative to 
the shear direction.

Now consider a mixture of discrete cubes of uniform size whose centres are randomly 
distributed throughout the material, each with its edges parallel to the coordinate axes. 
The direction cosines of each face are:

 

x 	 y plane : cos�x = cos�y = 0 cos�z = 1

y 	 z plane : cos�x = 1 cos�y = cos�z = 0

x 	 z plane : cos�x = 0 cos�y = 1 cos�z = 0

�

�
�

�
�
�  (3.17)

Each face has an initial area ao which, on deformation in simple shear, becomes:
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x 	 y plane : axy / ao( )2
= 1

y 	 z plane : ayz / ao( )2
= 1+ �2

x 	 z plane : axz / ao( )2
= 1

�

�

�
�

�

�
�
 (3.18)

The total area before and after deformation are:

Ao = 6Nao

A = 2N axy + ayz + axz( )
�
�
�

��  (3.19)

where N is the number of cubes. Then the ratio of areas becomes:

 

A
Ao

=
1
3

+
1
3

1+ �2( )
1/2

+
1
3

 (3.20 )

For most practical mixing problems, the total shear is large so:

  

A
Ao

�
�
3

 (3.21)

The initial surface-to-volume ratio of the mixture is:

  

Ao

V
= 6ao / ao

32 / Y( )
= 6Y / �

 (3.22)

where Y is the volume fraction of cubes having an edge length 
  
� = ao

1/2. Substituting 
Equations (3.1) and (3.22) into Equation (3.21) yields an expression for striation 
thickness:

   

r = 2V/A

= 2 V/Ao( ) / A/Ao( )
= � / �Y

 (3.23)

This analysis has assumed that the viscosity of the continuous and dispersed phases are 
identical, which is a reasonable approximation for mixing a masterbatch in a rubber 
matrix. However, if the dispersed phase is a low viscosity liquid or a high viscosity solid, 
mixing may be more diffi cult.

Consider the case shown in Figure 3.3. Two layers of one material A, each having a 
thickness  �1, are separated by a layer of a second material B having a thickness  �2. The 
two materials are identical in every respect except for their viscosities �A and �B. The 
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total separation between the plates initially is L and the upper plate moves to the right 
with a steady velocity U while the lower plate is held stationary. At steady-state the 
shear stress must be the same in each layer so that:

  

�A1 = �B = �A2

�A ��A1 =�B ��B = �A ��A2
 (3.24)

The velocity U1 of material A at interface 1 must equal the velocity of B at the same 
interface. Similar conditions apply at interface 2 where the velocity is U2. For this simple 
shear the shear rate in each layer is constant and equals the velocity gradient in that 
layer:

  ��A1 = U1 / �1
 (3.25)

  
��B = U2 	 U1( ) / �2

 (3.26 )

  
��A2 = U 	 U2( ) / �1

 (3.27)

Substituting these expressions for the shear rate into Equation (3.24), the shear rate in 
the minor component B can be calculated:

  

��B =
U
L

�2

L
+

2�1

L
�B

�A

�

�
�

�

�
	

�

�
��

�

�
		

	1

 (3.28)

If the viscosities of the two phases are equal:

  ��B = U / L
 (3.29)

Figure 3.3 Shear with different viscosities
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which is the uniform shear fi eld used in the previous calculation. If the viscosity of the 
minor component becomes very large, as with a solid:

  

�B / �A ��

��B �0
 (3.30)

so little shear mixing occurs in the minor component. On the other hand, for low 
viscosity liquids in rubber:

  

�B / �A = 0

��B �U / �2
 (3.31)

so that the shear mixing depends only upon the initial particle size  �2 and the velocity 
of the boundaries of the apparatus U. Because of this behaviour with a mismatch in 
viscosities, liquids can often be easily mixed into a rubber matrix but rigid aggregates 
require a masterbatch intermediate for good mixing. Large deformations of the rubber 
matrix, which consume much energy, are required to achieve small shear deformations 
in the rigid minor phase.

3.1.2 The Effect of Streamline Orientation

The relative orientation of the surface of the disperse phase element to the fl ow streamline 
is important in ensuring good laminar mixing [6]. In the simple Couette fl ow shown in 
Figure 3.4, the outer cylinder rotates about the inner cylinder with a constant angular 
velocity �. Because of the fl ow symmetry, all streamlines are circles concentric with the 
cylinders. If a thin concentric circle of tracer is placed in the fl uid, the normal to the 
tracer surface is orthogonal to the streamlines:

 

cos�r = cos�z = 0

cos�� = 1

�A / A = 1  (3.32)

and no shear mixing occurs. If the tracer is placed in a plane containing the cylinder 
axis:

 

cos�� = cos�z = 0

cos�r = 1

�A / A�= � = R�t
 (3.33)

If the tracer only partially crosses the annulus, then only a ring of mixed material forms 
because there is no radial velocity component. This simple experiment illustrates the 
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two important points which must be met for good and effi cient laminar shear mixing. 
First, the fl ow should be three-dimensional to ensure transport of the minor component 
to all parts of the mixture. This ensures good, simple mixing. Secondly, the elements 
of the minor component should be placed in the apparatus so that the fl ow paths of 
the elements of the major component are not tangential to the initial phase boundary. 
The quantitative measure of mixing in laminar shear mixing is the striation thickness, 
which can be calculated for a number of fl ow problems. In every case, it is found that 

Figure 3.4 The effect of streamline orientation
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the striation thickness is a function of the total shear strain and not just the shear rate. 
To maintain the same degree of mixing in scale-up, it is necessary to maintain the fi nal 
striation thickness, which means maintaining a constant total shear (See Chapter 5). In 
uniform shear fi elds there is no ambiguity to this statement, but in the non-uniform fl ow 
fi elds characteristic of mixing equipment, it is necessary to select a characteristic shear 
strain to use in scale-up. The maximum deformation occurs at a moving boundary, but 
because of complex fl ows, this may not be characteristic of the bulk fl ow. Therefore, it 
is more appropriate to use a value averaged over the bulk of the material:

  
� =

�v�dV
V

 (3.34)

where V is the volume of the mixture. It will be seen that this criterion differs from the 
scale-up rule used when particle or agglomerate rupture is controlling the goodness of 
mixing. Then it is necessary to maintain the maximum shear stress constant in scale-up.

3.2 Dispersive Mixing

Solid particle additives are incorporated into the rubber matrix to increase the mechanical 
strength, to colour the product, to reduce cost or to protect from environmental 
attack. These additives may be mixed directly into the product in the processing line. 
A masterbatch, which is an intermediate mixture with a high additive concentration, is 
often prepared fi rst and then diluted in the rubber matrix in the fi nal processing. The 
advantages of masterbatches are discussed in a later section.

The operation of mixing solid additives can be considered as two simultaneous processes. 
First, the solids initially incorporated into the rubber matrix may have too large a size 
because of incomplete milling by the supplier or compaction during shipment. More 
commonly, the particles initially form aggregates and agglomerates when incorporated 
into the rubber matrix and these secondary units must be reduced in size. This problem 
will be illustrated in Section 3.4 for the mixing of carbon black in rubber. In the case 
of pigments, the largest particles must be smaller than the limit of resolution by the 
eye if the product is to appear uniform. Particles must be small enough so that those 
near the surface do not protrude to give roughness or a matte fi nish where surface 
gloss is important. Carbon black and other reinforcing agents increase in effectiveness 
with higher surface-to-volume ratios of small particles. The particle size requirements 
may not have a simple physical interpretation as with pigments, but in every case a 
quantitative criterion can be established experimentally for the design or control of a 
mixing process. The break-up of particles and agglomerates in rubber requires large 
expenditures of energy because of the high viscosity of the matrix, so that equipment 
design and operating conditions must be set to meet the criteria without reducing particle 
sizes unnecessarily.
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The second process is to disperse the particles evenly throughout the bulk of the rubber 
to eliminate gross heterogeneities. In the case of small, non-interacting particles, the 
additive will follow the streamlines of the fl owing rubber and the problem is one of 
laminar mixing described above. If the particles interact, either through direct cohesive 
forces or through tie molecules of rubber, their trajectories are more complicated than 
for streamline fl ow. In principle, these trajectories can be calculated but the complex 
geometry of mixing equipment makes the calculations intractable in practice. By analysis 
of the idealised break-up and separation of particles, the physical principles of dispersive· 
mixing can be elucidated. As will be shown in subsequent sections, these can lead to 
confl icting requirements for equipment design, operation and scale-up which can only 
be resolved by using masterbatches.

3.2.1 Calculation of Forces on a Particle

The additive aggregate may consist of an agglomeration of particles held together by 
static charge accumulation on the surface or by tie rubber molecules, or it may be a 
single large particle which must be fractured into smaller fragments. In this case, it is 
convenient to consider the single large particle as if it were an agglomerate of smaller 
particles. Then the difference between aggregates and agglomerates can be considered to 
be solely a function of the inter-particle force which is large for aggregates and relatively 
weak for agglomerates. To elucidate the principles of dispersion, consider the aggregate 
as a pair of spheres of the primary particle with equal radii (R) as shown in Figure 3.5. 
The particle dimensions are small compared to the narrowest fl ow channel so the particles 
can be considered to be in an infi nite medium [7]. The pair of particles are suspended 
in the uniform simple shear fi eld of a Newtonian fl uid. The closest approach of the 
centres of the particles is 2R. For a separation of centres between 2R and r*, the force 
of attraction is considered constant and the force is negligible for larger separations. 
Then using the centre of one particle as the origin of a Cartesian coordinate system, the 
second particle has its centre located at:

 R2 = x2 + y2 (3.34)

and the forces are:

 F = Fa  2R < r < r* (3.35)

 F = -� r < 2R (3.36)

 F = 0  r > r* (3.37)

The fl uid velocity relative to the reference streamline which follows the centre of the 
fi rst particle:

   
� = ��y

 (3.38)
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The drag force on a solid sphere suspended in a Newtonian fl uid with viscosity � at low 
Reynolds number is given by Stokes law:

 Fd = 6�R�v (3.39)

where v is the relative velocity between the fl uid and the particle. Then the drag force 
can be resolved into two components:

  
Fdx = 6�R� ��y � dx/dt( )( )

 (3.40)

 Fdy = 6�R� (dy/dt) (3.41)

where dx/dt and dy/dt are the components of the relative velocity of particle 2 with 
respect to particle 1. The attractive force can be resolved into its components and 
equated to the drag force:

 
Fa cos� = Fa

x
r

= Fdx

 (3.42)

Figure 3.5 Separation of particles
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Fa sin� = Fa

y
r

= Fdy

 (3.43)

where � is the angle of the line connecting the particle centres. These last two equations 
can be combined to eliminate dt to yield:

  

dx
dy

	
x
y

= Kr

 (3.44)

where K = 
  
K = 6�R��� / Fa

which describes the particle trajectories. If the approximation is made that:

  r � x + y

then Equation (3.44) becomes linear:

  

dx
dy

+ x K 	
1
y

�

�
�

�

�
� = 	Ky

 (3.45)

which can be solved analytically as:

  

x + y
y

= Ce	Ky

 (3.46)

where C is a constant of integration. If the particle centre must pass through the point 
(xo, yo)’ then C is specifi ed and:

  

x + y
xo + yo

yo

y
= exp Kyo 1	

y
yo

�

�
�

�

�
�

�

�
��

�

�
��

 (3.47)

Using this equation, the particle trajectories could be calculated which allow some 
qualitative conclusions. 

First, high shear stresses, which mean large K, increase the dispersion. Low interparticle 
attraction also means high K and better dispersion. For a given particle attraction, there 
is a critical stress below which dispersion will not occur. For shear stresses only slightly 
above the critical value, dispersion is sensitive to the relative orientation of the particles 
to the fl ow fi eld. Larger particles have a higher K and disperse more rapidly. Finally, if 
the fl ow in the mixer is unidirectional, only particles favourably aligned initially will be 
dispersed. The remainder will be aligned with the fl ow and will not be separated unless 
the fl ow changes direction.
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This analysis has assumed the uniform simple fl ow of a Newtonian liquid and the simple 
creeping fl ow past a sphere, neglecting hydrodynamic interaction between spheres. 
Although the conditions in a rubber mixture are far more complicated, the essential 
points developed in this treatment would remain unchanged with a rigorous analysis. 
In an internal mixer, mill or extruder, the average channel depths are large compared to 
the particle size in order to achieve high throughputs. The shear stresses in these deep 
channels are low so that a region in the mixer with a narrow gap must be provided to 
obtain the high stresses necessary for particle or agglomerate rupture and dispersion. In 
subsequent chapters when specifi c equipment designs are considered, it will often be seen 
that the performance of a mixer is critically dependent on the design of these narrow 
gaps even though they may only occupy a small fraction of the mixer volume.

3.2.2 Flow in Thin Channels

The idealised treatment of the effect of the narrow gap at the tip of the blade in an 
internal mixer was derived by Bolen and Colwell [8], as discussed in detail in Chapter 5. 
The importance of this fl ow region can be seen by considering the fl ow past a blade tip 
shown schematically in Figure 3.6. Using the lubrication approximation to simplify the 
analysis [9, 10, 11], it can be shown as in Chapter 4 and 5 that the volumetric fl ow rate 
Q per unit axial length for a constant channel depth h is given by:

 
Q =

h
2U

	
h3

12�
dp
dx

�

�
�

�

�
�

 (3.48)

for a tip velocity U and pressure gradient dp/dx. If the channel depth varies slowly 
with position, this equation applies locally at each point. The x-component of velocity 
u becomes:

 
u = U 1	

y
h

�

�
�

�

�
� 	

h2

2�
y
h

	
y2

h2

�

�
�

�

�
�

dp
dx

 (3.49)

and the shear stress T becomes:

 

� = 	�
du
dy

= �
U
h

+
h
2

dp
dx

1	
2y
h

�

�
�

�

�
	

 (3.50)

Solving Equation (3.48) for the pressure gradient yields:

 

dp
dx

= 6�
U
h2

	
2Q
h3

�

�
�

�

�
�
 (3.51)
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The pressure above some uniform arbitrary pressure vanishes at the entrance and exit 
regions to the tip:

 

dp
dx

�

�
�

�

�
�

x=o

x=L

� dx = 0

 (3.52)

Substituting for the pressure gradient, this expression becomes:

 
6�

U
h2

=
2Q
h3

�

�
�

�

�
�dx = 0

0

L

�
 (3.53)

 

U = 2Q
dx
h3

0

L

� dx
h2

0

L

�

= 2Q H3 /H2( )  (3.54)

Figure 3.6 Flow past a blade tip
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where 
 
Hn = dx / hn�

and h may vary with position x. Substituting these expressions into the shear stress 
equation yields:

 
� =

6�Q
h2

	
8�QH3

hH2

	
12�Q

h
y
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 (3.55)

The maximum shear stress occurs at the blade tip where y = h:

 
�max =

6�Q
h2

	
8�Q

h
H3

H2  (3.56)

If the channel depth is constant, then the maximum shear stress varies inversely with the 
square of the gap so that the high shear stresses for particle dispersion require narrow 
gaps.

Although the fl ow between the blade tip and the wall or the nip region of a mill 
is predominantly a shear fl ow, there is an elongational fl ow component due to the 
contraction of the fl ow channel at the nip entrance. The forces generated by elongational 
fl ow are signifi cantly higher but the kinematics of the velocity fi eld play a crucial role. 
Kao and Mason [12] studied the dispersion of a suspension of polymethylmethacrylate 
(PMMA) beads in a silicone oil. The fl uid was a Newtonian liquid having � = 100 cp. 
The PMMA beads initially formed a compact aggregate in the fl uid and the aggregate 
size R was measured as a function of the total strain 

  ��t generated in a shear fl ow:

  u = ��y
 (3.57)

 V = 0 (3.58)

and the strain generated in an elongational fl ow:

  u = ��x / 2
 (3.59)

  V = 	��x / 2
 (3.60)

As shown in Figure 3.7, the elongational fl ow fi eld was signifi cantly more effi cient in 
particle dispersion than the shear fl ow. In the shear fl ow, the aggregate rotated and 
wobbled. Occasionally a particle separated from the aggregate and was swept away 
but there was no general break-up and dispersion of the aggregate. In contrast, with 
elongational fl ow particles were pulled directly from the aggregate which rapidly 
dispersed. The aggregate size closely followed the expression:

  
R0

3 	 Rt
3( ) = k��t

 (3.61)
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where Ro, Rt are the radius initially and at time t and k depends upon the kinematics of 
the fl ow. In this example, the attractive force between particles was negligible compared 
to the stresses generated in the fl ow fi eld.

When this occurs, Equation (3.61) shows that the aggregate size depends only on the 
total strain 

 
�� t and not on the maximum shear stress. This will be a crucial consideration 

in determining the appropriate scaling laws for sizing equipment and setting operating 
conditions.

On the other hand, in some cases the interparticle forces may be larger than the shear 
stresses generated. Then to improve dispersion on an existing piece of mixing equipment, 
either the shear stress must be increased by operating at higher speeds which increases 
the shear rate, or at lower temperatures which increases the viscosity. As will be shown 
in subsequent chapters, these variables are coupled because of viscous dissipation so 
that this is only an effective strategy over a narrow operating range. An alternative is 
to treat the particles before adding them to the rubber, or possibly using a co-additive 
to reduce interparticle attraction. This is particularly effective where high static charges 
hold the particles together so that thin layers of surface coatings on the particle greatly 
reduce the electrostatic forces. Additives which promote particle wetting by the rubber 
matrix act similarly to decrease interparticle attraction.

Figure 3.7 Effi ciency of fl ow fi elds in particle dispersion
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3.2.3 The Kinetics of Particle Dispersion

In principle, the force-on-a-particle calculations can be coupled with the analysis of 
fl ow at a rotor tip to obtain the rate of particle dispersion. Even for the highly idealised 
case here, no analytical solution is possible. A more realistic model including multi-
particle dynamics, non-linear forces and viscoelastic fl ow in complex geometries is 
beyond numerical calculation. Bolen and Colwell [8] proposed an empirical relation 
which is qualitatively similar to many theories of communition grinding [13]. Consider 
an initially uniform collection of no particles with diameter do. There exists a critical 
average stress on a particle Fo below which no rupture occurs. The probability P of the 
rupture of any particle per unit time is considered to be proportional to the difference 
between the average stress on a particle F and the critical stress:

P = O F < Fo (3.62)

 
P� F 	 Fo F > Fo  (3.63)

Then the rate of change in the number of particles is:

 

dn
dt

= k1(F 	 Fo)1	 exp(	k2t)) / F

 (3.64)

where n is the number of particles at time t, k is a measure of the rate of particle creation 
at high stress and long time and k2 is a constant which is a function of the agglomeration 
of particles. For large times, this becomes:

 

dn
dt

= �k1

F 	 Fo

F
 (3.65)

At steady-state, the rate expression can be integrated to yield:

 

n
no

= 1+ k1

F 	 Fo

nok2F
k2t = 1+ exp 	k2t( )( )

 (3.66)

If the degree of mixing M is given by:

 M = (Ro – R)/Ro (3.67)

and the particle radius R is related to the particle number by:

 no/n = (R/Ro)3 (3.68)

then the degree of mixing becomes:

M = 1 (no/n)1 3   (3.69)
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Which depends on the rate parameters as shown in Figure 3.8. An increase in the shear 
stress increases the rate of dispersive mixing and decreases the particle size. Decreasing 
the rate constant for mixing decreases both the rate and the change in particle size, in 
qualitative agreement with the earlier analysis for two particles.

The experimental measurement of the number of particles and their size distribution in 
a polymer matrix is a tedious process so that there is a paucity of data on the dispersive 
mixing of particles despite its great commercial importance. In one of the few papers 
with a suffi ciently well characterised experiment, Smith [14] measured the change in 
the size distribution of various pigment particles in polyethylene. Using the Quantimet 
particle counter to measure the size distribution [15], Smith calculated the area under the 
frequency curve for particles with 10 - 110 �m diameter. As the particle size decreases, 
the number of particles with less than 10 �m diameter increases so that the area under 
the frequency distribution curve decreases. An empirical relation was found:

DA = A + B loglO t  (3.70)

where DA was the change in area for mixing times t. The dependence of the rate constant 
B on the rotor speed in the Brabender mixer is shown in Table 3.1. 

Figure 3.8 The dispersion of particles

k1(F – Fo) k2

 noF

1 = 0.10 0.1
2 = 0.01 0.01
3 = 0.01 0.001
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Table 3.1 Rates of dispersion for pigments in polyethylene [14]
CI Pigment Number Rotor Speed

15 rpm 30 rpm 60 rpm
Red 48 1.27 1.30 1.50
Green 17 1.69 1.91 1.95
Green 7 0.49 0.72 1.08
Blue 28 1.14 1.64 2.40
Red 108 1.41 2.18 3.60
Black 7 0.75 1.10 3.51
White 6 0.63 1.01 2.06

Unfortunately, the change in area under the curve is not proportional to the number of 
particles because of the arbitrary cut-off size. For example, if a particle near the lower 
limit fractures into two pieces, the number of pieces increases by one but the number of 
measurement counts decreases by one. Qualitatively, the results are in agreement with 
the previous analyses. For a constant polymer matrix and operating conditions, the rate 
of agglomerate or aggregate break-up depends upon the type of pigment; each kind 
of particle has a characteristic stress. For a given particle, the break-up rate increases 
with the shear rate, but the relative increase in B with rotor speed declines as would be 
expected for a non-Newtonian fl uid if the shear stress were controlling dispersion where 
the shear rate is proportional to rotor speed but the shear stress is not proportional to 
shear rate.

3.3 Masterbatches

Rather than adding powder and liquid ingredients directly to the main product in a 
one-step process, the operator may choose the alternative procedure of preparing a 
masterbatch. A masterbatch is a resin containing a high additive concentration which 
is diluted in the main resin matrix to yield the fi nal product concentration. For example 
a 5% carbon black in styrene-butadiene-styrene (SBR) mix can be prepared by adding 
5 pounds of carbon black directly to 95 pounds SBR directly on a two-roll mill. 
Alternatively, 10 pounds of a 50% masterbatch could be added to 90 pounds SBR on 
the mills to yield the same concentration.

One of the main advantages of using a masterbatch is the cleanliness of the operation, 
which is especially important for carbon blacks. Blacks are notorious for forming fi ne 
diameter grains from abrasion during shipment. When the additive is poured from its 
container, these fi nes become airborne and form an ubiquitous grime throughout the 
plant unless ventilation is very good. Besides the general nuisance value, other resins and 
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products pick up these particles which can cause serious contamination. Many companies 
avoid this problem by using a special area for the preparation of black compounding 
which effectively isolates the dirt in one small section of the plant. Once the black has 
been incorporated into a resin, even at high concentration, it may safely be transferred 
to other sections of the plant without further dirt problems. Thus masterbatches permit 
the use of carbon black compounds with a minimum cost to prevent contamination.

Most other additives do not present the same potential for contamination as carbon 
black. Preparing a masterbatch inserts an extra processing step into the manufacturing 
line which represents a premium on the manufacturing costs. Therefore the decision to 
use a masterbatch must have a strong technological justifi cation.

One of the major problems with additives in continuous mixing such as in an extruder 
is to maintain a steady feed rate of the additive. It is easy to fi ll the feed hopper with a 
bag of resin or to feed continuously with a strip from an upstream process. Additives 
used in small amounts must be added intermittently in moderate amounts or small 
amounts added continuously. In the fi rst case, there must be signifi cant backmixing in 
the extruder for uniform dispersion but most extruders and other continuous mixers 
are designed to minimise gross backmixing. Continuous feeding at small rates is often 
unsatisfactory because the additive is in a physical state which is diffi cult to pump and 
meter. To overcome these problems, a highly concentrated masterbatch can be prepared 
in the form of pellets which are then blended with the base resin in a solid blending 
operation, as described in Chapter 2. The blend is then fed to the continuous process. 
With internal mixers, such as the Banbury mixer, the operation is essentially a batch 
process so that the problem of metering and intermediate additive feed does not arise.

Even with batch internal mixers, the requirement of high stress for the rupture of additive 
particles may dictate the use of masterbatches. To impose a high stress on the particle 
means that the rubber matrix must be subjected to a high shear rate. The concomitant 
viscous dissipation in the shear fi eld will raise the temperature of the batch. In large 
mixers especially, the heat transfer will be relatively poor so that the temperature rise 
accompanying the mixing for particle dispersion may cause degradation, or scorchiness 
if vulcanising agents are present. The high shear stresses necessary for particle rupture 
also require relatively small clearances between the rotor fl ight tip and the chamber wall. 
As discussed in Chapter 5, the elastic component of the viscoelastic behaviour of rubber 
will be more important in larger mixers so that the dispersion will be less effi cient in a 
smaller mixer. Finally, a signifi cant fraction of the energy input to the matrix is dissipated 
as heat rather than being transmitted to the particle for fracture.

The effi ciency of energy transfer to the dispersed phase can be approximately calculated 
using the system of Figure 3.3 and Equations (3.24)-(3.29). The energy dissipated per 
unit volume in each phase E can be calculated as:
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EA = 2�A ��A1

= 2�A��A1
2

 (3.71)

and

  

EB = �B ��B

= �B ��B
2

 (3.72)

where the factor 2 occurs because of the two layers of material A. Then the fraction of 
energy transferred to the disperse phase B is:
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EBVB

EAVA
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�B ��B
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�2S
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��B
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 (3.73)

where S is the interface area between layers. Substituting into this expression yields:

  
f =

�A�2

2�B�1
 (3.74)

For the dispersion of particles into rubber:

  

�A <�B

�2 << �1

f <<1
 (3.75)

Therefore only a small fraction of the shear energy is transmitted to the particle.

The less rubber in the mix during particle fracture, the more effi cient will be the use 
of energy. This may be a signifi cant cost savings in favour of the use of masterbatches. 
Ideally the feed particles will have the correct size distribution, accounting for the 
inevitable changes occurring in the mixing apparatus, so that the mixer need only be 
designed and operated for laminar shear mixing. This can be more readily accomplished 
with masterbatches.
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3.4 Incorporation of Carbon Black

One of the single most important operations in the rubber industry is the mixing of carbon 
black into a rubber matrix. Most articles in the literature concentrate on the effect of 
compounding changes on rubber properties. However, for any product formulation, the 
fl uid mechanical processes occurring in the mixing stage, the subject of this monograph, 
determines the uniformity of distribution of ingredients for homogeneous crosslinking 
as well as the shape and size of fi ller domains for reinforcement. Mixing has a direct 
effect on the product properties by controlling the fi ller dispersion.

Fedyukin and co-workers [16] dispersed zinc oxide and vulcanising agents in either oil 
or water latex of polyisoprene (PIP), or the additives were used as a powder. These were 
mixed with PIP on a mill. The latex-dispersed additives had the smallest initial particle 
size and the powder had the largest particles. The number of fi ller particles was largest 
for the latex while the particle size and distance between particles was smallest for this 
system. The reverse was true for the powder. The smaller latex-prepared particles gave 
the most rapid network formation, the most uniform distribution of crosslinks and 
the most elastic network. All of these properties correlated with the particle size of the 
dispersed phase.

Many mechanical properties of a fi lled rubber are functions of the volume fraction of 
fi ller particles. For example, the Guth-Gold equation predicts the stiffening effect of 
fi llers on the modulus [17, 18]:

 Ef = Eg(1 + 2.5� + 14.1�2)  (3.76)

where Ef is the modulus of the fi lled rubber having an unfi lled modulus Eg and having a 
volume fraction � of fi ller. When the volume fraction of fi ller alone is used, the equation 
is inadequate but Medalia introduced the concept of occluded rubber which states that 
the fi ller acts as if it had an effective volume �e:

 �e = � + �o (3.77)

where �o is the occluded rubber volume fraction. The occluded rubber model asserts 
that a fraction of the rubber is effectively immobilised in the interstices of the secondary 
carbon black particle which has a convoluted, open shape. The immobilised molecules 
tie several particles together which form agglomerates whose size is larger than the sum 
of the volumes of the particles alone. These agglomerates act as a structural unit in the 
matrix, and hence they are the relevant particles to consider in theories of reinforcement. 
The effective volume depends upon the ‘structure’ of the carbon black, which is a rough 
description of the architecture of secondary particles. The effective volume fraction can be 
calculated from the results of the standard dibutyl phosphate (DBP) absorption test:

�e = �(1 + 0.2139 DBP)/1.46  (3.78)

where DBP is the amount of DBP absorbed in a standard laboratory test [19].
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Kraus [20] extended these ideas to account for the effect of fi ller dispersion on 
crosslinking. He measured the stress � for a fi xed elongation � using SBR, oil-extended 
SBR and ethylene-propylene diene terpolymer (EPDM). The concentration of vulcanising 
agents as well as the fi ller concentration was varied. All of the data could be reduced 
essentially to a single master curve as in Figure 3.9:

  
�(�) 1+ k

�
1	 �

�

�
�

	



�

	1

= �of �e, t( )
 (3.79)

where !o is the crosslink density of the unfi lled rubber and k corrects for the infl uence of 
fi ller on crosslink reaction. Die swell and viscosity [18, 21, 22] as well as other properties 
couId also be predicted from the effective fi ller volume fraction.

Figure 3.9 Master curve for fi lled rubber
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At the beginning of the compounding step, the carbon black is completely segregated 
from the rubber matrix. At fi rst the rubber is folded over large clumps of carbon black 
which then break into more fi nely divided agglomerates dispersed through the bulk 
of the rubber, the ‘occluded rubber’ particles. These are large compared to the size 
of individual aggregate particles and to the steady-state size of aggregate domains. 
This inclusion step corresponds to the fi rst power peak observed in an internal mixer 
(Figure 5.2). With continued shearing the aggregates are pulled apart, the number of 
particles increases, the particle size decreases and the effective volume fraction increases. 
Therefore all properties which depend upon the effective volume fraction, such as die 
swell and Mooney viscosity, will depend on the amount of mixing (Figure 4.4).

3.5 Summary

The principal task of the mixing operation is to incorporate additives into the base 
material. This may involve masterbatches, which can be particularly effi cient for particle 
dispersion, or one-step processes. The additive must be uniformly distributed throughout 
the bulk of the rubber and the particle size must be suffi ciently small to give homogeneous 
properties. If the shear stresses are suffi ciently high so that particles rupture readily, 
then the total shear strain in laminar shear mixing determines the degree of mixing. 
If relatively strong particles must be reduced in size, then the maximum shear stress 
generated in the apparatus becomes important. In either case, the product properties 
critically depend upon the mixing process.
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The Milling of Rubbers

AuthorAuthor 4
Until the 1930s, the two-roll rubber mill was the workhorse of the rubber industry. Since 
that time, internal mixers have become the primary piece of plant mixing equipment 
because of the higher shear rates and shorter dwell times possible. Rubber mills still 
are an important component of the industry for sheeting dumps from internal mixers. 
Many laboratory trial formulations are fi rst prepared on a small mill. When the average 
run number of batches is small and the equipment requires careful cleaning to prevent 
contamination when products are changed, mills may be cheaper than internal mixers 
because of a shorter downtime between batches. For small batches of high value product 
such as specialty grades of silicone rubbers, mills may be more economical because of 
lower capital costs despite higher labour costs.

Even if the only application of the analysis of a two-roll mill presented in this chapter 
was to model the mixing in a laboratory mill, the study would be valuable in scale-up 
for selecting the size and operating conditions when a new product is transferred to 
an internal mixer. Often insuffi cient care is taken in the scale-up process so that the 
laboratory product is signifi cantly better mixed than the material from the full-scale 
production equipment. As a consequence, the plant product is inferior to the trial 
formulation and a great deal of time and money must be expended before the cause 
of the problem is discovered. But in addition to the scale-up problem, it will be shown 
later that the milling of rubber exhibits all of the important physical processes and 
limitations that occur in an internal mixer. The fl ow of the rubber through the mill 
nip is essentially the same as fl ow between the rotor tip and wall in an internal mixer 
as well as fl ow between rotors. Because of the simpler geometry of a mill, analytical 
solutions to  problems can be obtained which enable quantitative calculations of the 
effect of material and process variables to be made. Then estimates of the effects of 
these variables in an internal mixer can be made where exact solutions are impossible 
because of the complex fl ow geometry. Furthermore, the infl uence of a single variable 
can be isolated in model calculations when it might be diffi cult to alter the variable 
independently in a laboratory experiment.

The fl ow streamlines can be seen qualitatively in Figure 4.1. The two rolls have the same 
diameter but one roll may rotate at a higher rate than the other. The ratio of peripheral 
roll velocities, Ul/U2, is called the friction ratio f and ranges from 1.0 to 1.4 for most 
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mills. The mill is a batch mixing process. Most of the rubber accumulates in the entrance 
region to the narrowest separation of the rollers called the nip. This mass of rubber, 
the bank, rotates slowly because of the relative motion of the rolls at the surface. The 
material in contact with the roll surface is dragged into the nip region where the rubber 
matrix is subjected to high shear rates and shear stresses. The material leaving the nip 
region will adhere to one of the rolls, depending upon the temperature of the rolls and 
the composition of the rubber; usually the rubber sticks to the hotter roll. The fi lm 
adhering to the roller is rotated around and back into the rotating bank at the entrance 
region. Because there is very little motion along the roll axes, it is necessary to have an 
operator who periodically folds the sheet on the rolls from end-to-end to ensure good 
distribution of additives throughout the rubber.

4.1 The Analysis of a Calendar

It is convenient to begin the analysis by considering the isothermal fl ow of a Newtonian 
fl uid through the nip region. The effects of multiple passes through the nip and 

Figure 4.1 Flow streamlines of a symmetric mill
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accumulation in the bank, as well as non-isothermal, non-Newtonian fl ow will be 
treated later.

4.1.1 Basic Flow Equations

Consider the geometric representation of a mill shown in Figure 4.2. Two rolls with equal 
radii R are-aligned with parallel axes and a minimum separation 2ho at the nip. Each 
roll turns at a constant and equal rate so that the peripheral velocities U of the two roll 
surfaces are equal and f =1.0. A Cartesian coordinate system is considered to be placed 
in the nip so that the y-direction is normal to the roll surface, the x-direction is tangent 
to the roll surface and the origin is in the centre of the nip. Because of the symmetry of 
the system, there is no fl ow in the z-direction. In this two-dimensional fl ow problem, 
let u be the velocity in the x-direction and let v be the fl uid velocity in the y-direction. 
Then for this system, the fi eld and constitutive equations for an incompressible fl uid 
are [1, 2, 3]:

Continuity (Conservation of mass):

 

�u
�x

+
�v
�y

= 0

 (4.1)

Conservation of momentum (x-component):

  
� u

�u
�x

+ v
�u
�y

�

�
�

�

�
	 = �

�p
�x

+ �i�( )x

 (4.2)

Constitutive equation (Newtonian fl uid):

 
�xy =�

�u
�y

+
�v
�x

�

�
�

�

�
�

 (4.3)

Because the fl ow is relatively slow and the viscous forces are high for rubbers and other 
polymers, the left-hand side of the momentum equation, which represents acceleration, 
can be neglected for a Newtonian fl uid. This is not always a valid assumption, as will 
be discussed in Section 4.2 on process instabilities. At the surface of the rollers the fl uid 
moves with the velocity of the roll, the no-slip boundary condition. Because the nip 
separation is small compared to the fl ow length in the x-direction:

 

�u
�x

<<
�u
�y  (4.4)
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and only derivatives with respect to y need be considered. Furthermore, it is assumed that 
the pressure p varies only in the x-direction. The radius of curvature of the rolls is large 
compared to the gap separating the rolls in the nip so that fl ow can be approximated 
locally as fl ow between parallel planes tangent to the rolls. These assumptions comprise 
the lubrication approximation [4]. Using these simplifi cations, the set of Equations 
(4.1)-(4.3) reduces to a single equation to be solved:

 

�p
�x

=
�2u
�y2

 (4.5)

with the boundary conditions:

 u(h) = u(–h) = U (4.6)

Because the rolls are curved, the roll separation h is a function of the x-coordinate:

h = h(x) (4.7)

Integrating Equation (4.5) at a constant x yields:

  

�u
�y

= �� =
1
�

dp
dx

�

�
�

�

�
�y + c1

 (4.8)

Because of the symmetry of fl ow about the centreline with equal roll speeds:

Figure 4.2 Geometry of a mill
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�u
�y y=0

= �� 0( ) = 0

 (4.9)

c1 = 0 (4.10)

and
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�y
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1
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dp
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�

�
�

�

�
�y

 (4.11)

Integrating a second time yields:

 
u =

1
2�

dp
dx

�

�
�

�

�
�y2 + c2

 (4.12)

At the roll surface where y = h:

 U(h) = = U (4.13)

 
c2 = U 	

1
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dp
dx

�

�
�
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�
�h2

 (4.14) 

 
u = U +

y2 	 g2

2�
dp
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�

�
�

�

�
�

 (4.15)

The volumetric fl ow rate through the rolls per unit width is calculated:

 
Q = 2 u(y)dy

0

h

�
 (4.16)

Substituting Equation (4.15) for the velocity yields:

 

Q = 2 U +
y2 � h2

2�

�

�
�

�

�
�
dp
dx

�

�
��

�

�
��dy

0

h

�
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�
�

�

�
�

 (4.17)

Solving this equation for the pressure gradient yields:

 

dp
dx

=
3�U
h2

1	
h1

h

�

�
�

�

�
�

 (4.18)
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where the substitution has been made:

 h1 = Q/2U (4.19)

Substituting Equation (4.18) back into (4.15) yields:

 
u =

U
2

3y2

h2
1	

h1

h

�

�
�

�

�
� 	1+

3h1

h

�

�
�

�

�
�

 (4.20)

Now it is convenient to introduce dimensionless variables and to incorporate surface 
geometry. At the roll surface:

 

y = ±h

= ± ho + R 	 R 	 x( )1/2( )
= ± ho +

x2

2R

�

�
�

�

�
�

 (4.21)

when x/R is small.

Let dimensionless coordinates be defi ned as:

 " = y/(2Rho)1/2 (4.22)

and

 # = x/(2Rho)1/2 (4.23)

Use the dimensionless auxiliary variables:

 � = (2ho/R)1/2 (4.24)

and

 #1 = h1/(2Rho)1/2

   = Q/2U(2Rho)1/2 (4.25)

Substituting these dimensionless variables into the expression for the pressure gradient, 
Equation (4.18), yields:

 

dp
d�

=
6�U
ho

�

� 	 �1
2

1+ �2( )
3

�

�

�
��

�

�

�
��

 (4.26)

This equation may be integrated to yield:
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 (4.27)

At the point where the sheet loses contact with one roll, the pressure is zero [1, 3].

  

p �1( ) = 0

C = 1	 3�1( ) tan	1 �1 	
1+ 3�1

2( )
1+ �1

2
�1

� 5�1
3

 (4.28)

The fl ow streamlines for equal roll speeds may be calculated:
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 (4.29) 

where substitution of the dimensionless variables into the expression for the velocity, 
Equation (4.20), yielded:

  

u =
3U
2

�2 	 �1
2

1+ �2( )
3
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 (4.30)

From Equation (4.29) the streamlines for fl ow into the nip region of a mill with equal 
roll speeds can be calculated as shown in Figure 4.1. It can be seen that fl ow in the nip 
is nearly parallel to the roll surfaces. Towards the center of the upstream region in the 
wedge corresponding to the main portion of the bank there is a backfl ow which takes 
the form of vortices which gives the circulation in a rolling bank. The material enclosed 
by the vortex does not enter the nip with symmetrical fl ow so that there is a fraction of 
the material which is never subjected to high shear and mixing is unsatisfactory. As will 
be seen in Equation (4.45), the vortex can be eliminated by using unequal roll speeds 
which improves mixing. The velocity profi les can also be calculated and presented as in 
Figure 4.3. The backfl ow is clearly evident in this fi gure. Some additional information 
may be gained from this analysis before considering more complex cases. Firstly, the 
shear rate

 
��  and the shear stress � may be calculated:
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�� =
�u
�y

=
du
d�

1 / 2Rho( )1/2( )
 (4. 31)

Substituting the equation for the velocity (4.30):

  

�� =
12U�
�2

�2 	 �1
2( )

1+ �2( )
3

1

2Rho( )1/2

=
6U�
�ho

�2 	 �1
2( )

1+ �2( )
3

 (4. 32)

The shear stress for a Newtonian fl uid becomes:

  

� =���

=
6�U�
�ho

�2 	 �1
2( )

1+ �2( )
 (4.33)

Figure 4.3 Velocity profi les in a symmetric mill
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The maximum shear rate and the maximum shear-stress for any $-position occur at the 
roll surface where:

 y = h (4.34)

 
� =

�
2

1+ �2( )
 (4.35)

  

��max =
3U
ho

�2 	 �1
2( )

1+ �2( )
2

 (4.36)

 


max =
3�U
ho

�2 	 �1
2( )

1+ �2( )
2

 (4.37)

The distribution of the maximum shear stress with distance into the nip can be calculated 
as shown in Figure 4.4 [3]. It can clearly be seen that this is far from being a uniform 
shear fl ow. The expressions for the maximum shear stress or average total shear strain 

Figure 4.4 Distribution of shear stress on a symmetric mill
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for use in scale-up could be calculated by substituting the appropriate expressions for 
u, 

 
��  and � into the scaling laws as discussed in Chapter 3. These calculations will be 

presented later in this chapter.

Rather than operating the rolls at equal speeds, the two rolls can be run at different 
speeds. Rather than using Equations (4.9) and (4.13), the appropriate boundary 
conditions become:

 u(h) = U1 (4.38)

 u(-h) = U2  (4.39)

 f = Ul/U2 > 1  (4.40)

The derivation leading to Equation (4.8) remains the same, but because the fl ow is no 
longer symmetric, Equation (4.9) does not apply and c1 �  0. Integration of Equation 
(4.8) leads to:

  
u =

1
2�

dp
dx

�

�
�

�

�
�y2 + c1y + c2

 (4.41)

Substitution of Equations (4.38)-(4.39) and using the additional dimensionless 
variables:

 Uo = (U1 + U2)/2 (4.42)

 % = ((U1 + U2)/2Uo (4.43)

leads to:
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3
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 (4.44)

The velocity profi les may be calculated as before, and typical results are shown in 
Figure 4.5. The streamlines may be calculated as before to yield:
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Uoho
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3
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��

 (4.45)

Now all streamlines lead to the region of fi nite shear deformation beyond the stagnation 
point and the total shear is increased for improved mixing. However, there are still 
regions of closed streamlines so that the two-roll mill is not an ideal mixer.

The shear stress can be calculated for non-symmetric fl ow:



79

The Milling of Rubbers

  

� =
6�Uo

�ho

� �2 	 �1
2( )

1+ �2( )
3

+
��

6 1+ �2( )

�

	







�

�
��

 (4.46)

Comparing this expression to the equivalent one for symmetric fl ow [Equation (4.33)], 
it can be seen that the shear stress is always higher for non-symmetric fl ow so that the 
dispersion of particles is better.

The predicted pressure profi les along the roll surface for symmetric fl ow have been 
compared to experimental measurements for Newtonian and non-Newtonian fl ow. 
Bergen and Scott [5] found the theory worked well for Newtonian fl uids up to the 
separation point as shown in Figure 4.6. However, the data for thermoplastics did not 
fi t well because of non-Newtonian fl uid behaviour.

Figure 4.5 Velocity profi le on an asymmetric mill
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4.1.2 Power-law Fluids

Gaskell [1] also showed how to include non-Newtonian fl uids in the analysis. Rather 
than Equation (4.5), the momentum equation becomes:

 

dp
dx

=
��
dy

=
d
dy

�
du
dy

�

�
�

�

�
�

 (4.47)

where now the viscosity is not a constant but can depend upon the shear rate. Integration 
of this equation gives:

 
y

dp
dx

= � =�
du
dy

 (4.48)

Eliminating y from the two parts of Equation (4.48) yields:

 

du =
1

dp / dx( )
�
�

d�

 (4.49)

Figure 4.6 Pressure profi le on a mill
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Integrating this expression:

 

u = U �
1
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�
 (4.50)

The volumetric fl ow can be calculated [Equation (4.16)] as:
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�d �

0

�w

�

and substituting Equation (4.50):
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From Equation (4.48), the shear stress at the wall is:

 
�w =

dp
dx

ho 1+ �2( )
 (4.52)

where:

 y = h = ho(1+#2)

Substituting into Equation (4.51):
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Also: 

 
Q = 2Uho 1+ �1

2( )
 (4.54)

so that Equation (4.53) becomes:

 

�2 � �1
2 =

1

Uho dp / dx( )2

�
�

�

�
�
�

	



�

�w

�
0

�w

� d� d�

 (4.55)

which is equivalent to:
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If the material behaves as a power-law fl uid:

 
� = �o

�
�o

n	1( )/n

 (4.57)

then substitution into Equation (4.56) yields:

 

�2 	 �1
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±n�o
(n	1)/n

2n +1( ) Uho�o dp / dx( )2
�w
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 (4.58)

where the negative sign applies when �1
2 > �2

. Combining Equations (4.52) and (4.58) 
and solving for the pressure gradient yields:
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where: 

  
k =

2n +1
n

�

�
�

�

�
�

n
U�o

ho�o

�

�
�

�

�
�

n
�o
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 (4.60)

Comparing the expression for a Newtonian fl uid [Equation (4.26)] to that for a power-
law fl uid [Equation (4.60)] where n < 1, the pressure gradient is everywhere lower for 
non-Newtonian fl ow. Often the pressure for a pseudoplastic fl uid may be only 5-10% of 
that with a Newtonian fl uid having the same zero-shear-rate viscosity. As a consequence 
the shear stress will be signifi cantly lower and particle dispersion will not be as effective 
with a power-law fl uid.

So far only the shear component of fl ow has been considered. As part of the lubrication 
approximation used in deriving the expressions for velocity, it was assumed that the 
rate of elongation was small compared to the shear rate:

  

�u
�x

<<
�u
�y

 (4.61)

Using the expression for the velocity from Equation (4.30), the velocity gradients may 
be calculated for a symmetric mill:
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for the shear rate, and the rate of elongation becomes:
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In the nip region where the analysis is of major interest, the assumption of relatively small 
rates of elongation is verifi ed. However, the elongational component is not zero. Because 
of the change in velocity with distance into the nip #, there may be some orientation of 
the rubber molecules in the nip. With Newtonian or simple power-law fl uids there is 
no change in the character of the fl ow behaviour with elongational fl ow. Viscoelastic 
materials, however, often appear to be more ‘elastic’ in response with stretching fl ows 
which may lead to fl ow instabilities, as discussed in Section 4.2.

An estimate of the importance of the stretching fl ow can be made [6]. Instead of Equation 
(4.5), use the momentum balances in both x and y coordinate directions:

 

�p
�x

=
��xx

�x
+
��xy

�y
 (4.63a)

and 

 

�p
�y

=
��yy

�y
 (4.63b)

where 
xx, 
yy are the normal stress components and 
xy is  the shear stress, corresponding 
to � used previously. Taking the partial derivatives of Equations (4.63a) and (4.63b) 
with respect to y and x, and subtracting, yields:

 

�2�xy

�y2
+

�2

�x�y
�xx �� yy( ) = 0

 (4.64)

If the normal stresses contribute signifi cantly to the fl ow, then the two terms have the 
same order of magnitude:
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�xy

ho
2
�
�xx 	� yy

Rho  (4.65)

 
xx ñ 
yy =(R/ho) 
xy

 =102 
xy (4.66)

Normal stresses, hence the elongational fl ow, become important in milling when the 
normal stress difference is approximately 100 times the shear stress. This may occur 
with rubbers and lead to milling instabilities.

4.1.3 Scaling Laws

Before considering the behaviour of rubbers and other viscoelastic materials, it will be 
useful to examine the consequences of scaling a Newtonian fl uid process using either 
constant total shear strain or constant maximum shear stress as the similarity constraints. 
Other choices for the scale-up laws will be discussed for viscoelastic materials in a later 
section. The constant shear stress constraint may be expressed as:

 � max,l = � max,2 (4.67)

where �max is the maximum shear stress in the nip for mill sizes 1 and 2. An alternative 
might be to use the average shear stress in the nip region. Because it is desired to 
break down even the strongest particles; the maximum shear stress is the more useful 
alternative. A large average stress fi eld which does not generate a force anywhere 
suffi ciently large to break the toughest agglomerates will not be a very good mixer. 
Considering the equation for shear stress:

  

� =���

=
6�U�
�ho

�2 	 �1
2( )

1+ �2( )  (4.33)

the maximum shear stress will occur at the wall at the minimum nip:

 n = ho/(2Rho)1/2

   = �/2

 # =0

and the expression becomes:

 

�max =
6U � / 2( )

�ho

	�1
2( )

= 	
3�Q2

8URho
2  (4.68)
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where Equation (4.25) has been substituted for #1. For scaling-up with the same material, 
the viscosities are equal and Equation (4.67) becomes:

 

Q1

U1ho
2
1R1

=
Q2

U2ho
2

2R2
 (4.69)

For most scale-up problems, the dimensions of the two mills are fi xed and known. In this 
case, specifi cation of the volumetric fl ow rate fi xes the roll speed of the second mill:
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 (4.70)

If the roll speeds are specifi ed in terms of the rates of rotation N rather than the peripheral 
velocities:
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 (4.71)

Therefore the required roll speed to maintain a constant maximum shear stress can be 
calculated.

For a power-law fl uid, the scale-up law can be calculated from the momentum 
equation:

 

dp
dx

=
��

dy
 (4.47)

 
� = �

dp
d�

 (4.48)

Substituting Equation (4.59) for the pressure gradient:

 

� =
k� �2 	 �1

2( )
n

1+ �2( )
2n+1

 (4.72)

which has a maximum value:
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For scale-up with the same material, �o, �o and n are the same for both materials. 
Substituting Equation (4.73) into Equation (4.67) and solving for the velocity ratio 
yields:
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The effect of non-Newtonian behaviour can be shown in the scaleup laws at a constant 
maximum shear stress. Consider the scale-up of a Newtonian fl uid and a power-law 
fl uid having the same zero-shear viscosity on the same set of mills. Let:

 an = N2/N1 (4.76)

for a Newtonian fl uid, and

 ap = N2/N1 (4.77)

for a power-law fl uid. Then to calculate the effect of pseudoplastic behaviour, let the 
scaling ratios be:

 � = Q2 / Q1 �1  (4.78)

 
� = ho1 / h02 ~ 1  (4.79)

 � = R1 / R2 < 1  (4.80)

From Equation (4.71):

 an = �2&2�2 (4.81)

and from Equation (4.75) :
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2n�
2	

1
2n

 (4.82)

Then:
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 (4.83)
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Depending upon the relative roll sizes and nip setting, the speed ratio may be higher, 
lower or the same for the two materials. Often the gap setting is nearly constant, & ~ 
1, compared to the change in roll radii so that the ratio of roll speeds must be larger 
for the power-law fl uid.

The total strain per pass through the nip may be calculated based on a velocity-averaged 
shear rate:

  

� = ��t

=

2 u��
d�
u

d�
��1

�1
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 (4.84)

where the transit time for a particle over an incremental path length is:

 
dt =

d�
u

 (4.85)

and
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Substitution into Equation (4.84) and integration yields:
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Then the total shear strain criterion becomes:

 �1 = �2 (4.87)

Substituting Equation (4.25) for #l and solving for the velocity ratio, the expression 



88

Mixing of Rubber

becomes:
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ho2

ho1

Q1
2

8U1
2R1ho1

+ 3

Q2
2

8U2
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 (4.88)

In general, this expression cannot be further simplifi ed. However, as an approximation 
to Equation (4.17):

  
Q � 2Uho  (4.89)

Substituting this approximation into Equation (4.88):

 

U2

U1

=
ho2

ho1

ho1 / 8R1( ) + 3

ho2 / 8R2( )+ 3
 (4.90)

But from the roll geometry:

 ho/R << 1

so that the constant total shear strain per pass criterion becomes:

  

U2

U1

�
ho2

ho1

� 1  (4.91)

To maintain constant total shear strain, which is equivalent to reaching a constant 
striation thickness by laminar shear mixing, scale-up on a mill with equal roll speeds 
requires that the peripheral velocities be maintained nearly constant since the gap settings 
are nearly constant.

The total shear in a mixing operation can be calculated:

 �tot = �NT (4.92)

where the total shear �tot is calculated from the shear per pass and the total number of 
passes NT. If the roll speeds are fi xed according to Equation (4.91):

 

N2

N1

=
R1

R2

ho2

ho1  (4.93)

then Equation (4.92) fi xes the mixing times:

 NT = Ntm (4.94)
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 (4.95)
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which means that the mixing time will increase with the increase in roll radii. A more 
useful criterion is obtained if the total shear strain Equation (4.92) is held constant while 
allowing the shear strain per pass Equation (4.86) to change. Then:

 �1N1tm1 = �2N2tm2 (4.97)

Substituting for the shear strain per pass and solving for the ratio of mixing times 
yields:
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 (4.98)

Thus the mixing time in scale-up is fi xed by the mill geometry and the roll speed.

4.2 Processing Instabilities

Until World War 2 nearly all rubber products were made with natural rubber. In the 
intensive shear of the Banbury mixer (Chapter 5), natural rubber suffers a signifi cant 
decrease in molecular weight by mechano-chemical degradation so the material dumped 
onto the mill for fi nishing behaved essentially as a power-law fl uid. With the increased 
use of synthetic rubber in the 1950s, new problems arose because materials such as 
styrene-butadiene-rubber (SBR) retained their high molecular weight in the Banbury 
and exhibited more elastic-like behaviour on the mill. Hammer and Railsback [7] were 
among the fi rst to mention unstable fl ow in the mill with their study of the effect of 
temperature on the processing of cis-polybutadiene. Tokita and White [6, 8, 9] were 
the fi rst to apply a systematic analysis of the mill behaviour of viscoelastic materials, 
as reported here.

In a series of milling experiments with various grades of polybutadiene, SBR and 
ethylene-propylene rubber (EPR), White  and Tokita found four distinctive regions of 
fl ow behaviour as shown schematically in Figure 4.7. The behaviour of a particular resin 
depends upon the mill dimensions, roll speeds and operating temperature. In a qualitative 
description, most of the material in region 1 remains in the bank behind the nip which 
may be turning itself because of the roll motion. A small tongue of rubber may enter 
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the nip and most of this will retract into the bank although small strands may continue 
to adhere on either roll, although predominantly on the slow roll. If the temperature 
of the rubber is increased suffi ciently, signifi cant fl ow through the nip commences and 
a tight, opaque elastic band clings to the slow roll and rotates back into the bank in 
region 2. If the temperature is raised higher, region 3 behaviour is observed. The band 

Figure 4.7 Regions of mill behaviour
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becomes transparent and may sag from the roll surface in mild bagging. In some cases 
bagging begins on the opaque material. The bag may crumble or tear, depending upon 
the material and operating conditions. If the temperature is increased again, region 4 
behaviour is observed where a transparent, viscoelastic fl uid fl ows through the nip and 
usually adheres to the slow roll. At higher roll speeds, ripples may appear because of 
pressure-viscous effects leading to instability [10].

In region 1 there is essentially no fl ow between the rolls. Consequently the analysis 
used before is not applicable in this region. Instead consider the behaviour of the 
rubber sitting in the mill bank [11]. The material adjacent to the roll surface will try 
to adhere to it. Because the rolls rotate a stress is generated and transmitted through 
the rubber, The material will fl ow in response to the applied stress so that this is a 
complex creep problem. As the material dragged by the rolls enters the nip region, 
resistance to fl ow increases and the shear stress at the wall must increase for the fl ow 
to continue. The strength of the forces attaching the rubber to the roll surface has a 
fi nite value. If the shear forces exceed the critical value corresponding to the force of 
adhesion, the wall will move relative to the rubber. When slip occurs, the rubber will 
not enter the nip and an oscillating tongue is observed as material slips and sticks to 
the wall. There are complex fl ow patterns because of circulation in the bank which 
preclude an analytical solution but the essential behaviour can be predicted from the 
following analysis.

If the wall shear stress exceeds the critical stress, there is no fl ow through the nip. Below 
the critical stress, fl ow occurs essentially as described before with appropriate changes 
for a viscoelastic fl uid. At the critical operating conditions:

 �w = 
crit (4.99)

If the fl ow can be treated as a one-dimensional creep problem:

 �(t) = J(t) 
crit (4.100)

where the strain � is related to the critical stress by the dependent creep compliance J(t). 
If the fl uid behaviour can be approximated by linear viscoelasticity, the creep compliance 
and the shear modulus are related by the convolution integral [12]:

 
J(t � s)G(s)ds = 1 / t

0

t

�
 (4.101)

The simplest viscoelastic model which exhibits the essential behaviour is the Maxwell 
model for which:

 G(t) = Go exp(-t/%) (4.102)

where the modulus is related to the initial modulus Go and the relaxation time %.  The 
fl uid viscosity is given by:
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 � = %Go (4.103)

This is the deformation behaviour which would be observed for a mechanical analogue 
which consists of a spring and viscous dashpot in series.

Substituting Equation (4.103) into the convolution integral and solving for the 
compliance:
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�Go  (4.104)

The time required for material to pass through the mill is essentially that required to 
obtain a shear strain:

 � = R/ho (4.105)

Substituting Equations (4.104) and (4.105) into the creep equation, the critical fl ow 
time can be calculated:
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 (4.106)

The approximate transit time for a fl uid element at the roll surface is:

 t = ho/�RN  (4.107)

If this value is less than tcrit then region 1 behaviour will be observed, which is equivalent 
to too rapid a rate of roll rotation.

Most rubbers are not described properly by a single Maxwell element but their behaviour 
may be described by a parallel array of elements, each with their own characteristic 
retardation time [12] If this distribution of retardation times is continuous, then the 
epxression for the creep compliance becomes:

  
J(t) = L(�) 1� exp �t / �( )( )d�n� + t / �( )

��

+�

�
 (4.108)

where L(%) is the spectrum of retardation times. Substituting this expression into the creep 
equation yields an implicit expression for the critical time for fl ow through the nip:

  

R
ho

= � crit L(�) 1� exp �t / �( )( )d�n� +
t� crit

���

+�

�
 (4.109)
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The response of a viscoelastic material depends upon the time scale of the experiment 
compared to the relaxation time of the material. Silly putty is a familiar example of this 
phenomenon. If a ball is formed from this silicone rubber and dropped onto the fl oor, 
it bounces because the time of impact, on the order of milliseconds, is small compared 
to the relaxation time of the material, on the order of seconds.

If the ball is left on a table, it will fl ow into a pool within an hour because of the pull 
of gravity. The time of the experiment is long compared to the relaxation time and the 
material behaves as a fl uid rather than an elastic solid.

This dependence of the fl ow behaviour on the ratio of the time scale of an experiment 
to the material relaxation time can explain the appearance of region 1. The time scale 
of the experiment may be expressed as the ratio of a characteristic length to the roll 
velocity. Because we are concerned with fl ow through the nip, the roll gap (2ho) and roll 
velocity (2�RN) are the appropriate values, resulting in Equation (4.107). Substituting 
into Equation (4.106), a Weissenberg number (We) may be calculated:
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For values much less than unity, the material behaves as a viscous fl uid; for values 
greater than unity, the material behaves elastically. For values near one, the behaviour 
is highly complex.

The change in the Weissenberg number with operating conditions and material 
qualitatively explains the region 1 - region 2 transition observed by Tokita  and White. 
For the same material and operating temperature, an increase in gap half-width (ho) 
decreases the Weissenberg number. Flow was observed to become more stable when 
this happened and the transition to region 2 occurred. For a constant mill geometry, 
increasing the temperature decreases the relaxation time. This lowers the Weissenberg 
number and again transition to stable region 2 was observed.

Because of the approximate nature of the analysis of region 1 behaviour, the equations 
cannot be directly applied to process design. Two important points do arise from the 
analysis. Firstly, there is a characteristic number, the Weissenberg number, which is a 
measure of how the material will respond in the mill. In scale-up, this will prove to be an 
important group. Secondly, this analysis gives a qualitative understanding of the causes 
of stop-start instability in a rubber mill. This oscillating fl ow arises from the viscoelastic 
nature of the rubber. In practice, the problem may be overcome by increasing the nip 
gap, decreasing the roll speed or raising the temperature. In the next chapter on internal 
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mixers, it will be seen that this instability may delay the start of effective mixing cycles 
as well as limiting the maximum shear stress by preventing fl ow between the rotor tip 
and chamber wall.

Milling in region 2 consists of a tight elastic band clinging to one roll. In this region 
the material exhibits its full viscoelastic behaviour. As the roll speed increases, minute 
tears and surface irregularities form which heal within one revolution. A decrease in 
nip gap leads to a smoother, tight band. If the band is cut, the rubber will retract from 
the hole because of stored elastic energy.

The full viscoelastic problem is not amenable to solution, even for relatively simple 
viscoelastic constitutive equations. Despite this lack of analysis, some information can be 
obtained for this region. The lower temperature limits and operating conditions are set 
by the transition to region 1 behaviour just described. In region 2 surface irregularities 
and tears form on the band surface as the material separates from the second roll. In 
the region of stable operation, the surface tears will not propagate within the time of 
a single revolution of the roll. The tear will only propagate if the stored energy arising 
from deformation in the mill nip exceeds a critical value, and the rate of tear propagation 
is a function of the stored energy [11]. Thus two criteria can be set for the upper limit 
to a stable region 2. Firstly:

 E ' Ecrit  (4.111)

where E is the stored elastic energy of a material having a critical tearing energy (Ecrit). 
Secondly, the stress generated in a single pass, which is a function of the mill geometry 
and operating conditions, must essentially relax in one revolution of the rolls. If the 
stress does not relax, the material will become oriented along the fl ow lines and shear 
mixing will decrease. Furthermore stress will rapidly build up and exceed the critical wall 
stress so slip begins at the wall. For the stress to relax in one revolution, the relaxation 
time must be small compared to the period of revolution. The Deborah number (De) 
is a measure of this ratio:

 De = %/trot

 = 2�%N (4.112)

In contrast to the Weissenberg number, the only machine parameter is the rate of rotation. 
In scale-up, the Deborah number should also be kept constant in order to preserve the 
fl ow regime. Other uses of the Deborah number will be given in Chapter 5. The higher 
the temperature, the more rapidly stress will relax. The slower the roll speed, the more 
stable the operation is.

The upper limit for stable operation is set by a stored energy criterion. The stored elastic 
energy density for a Maxwell fl uid may be calculated:

 E = tr T2/2G  (4.113)
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where T is the deviatoric stress tensor and the trace tr is the sum of diagonal elements. 
The average energy density for a single revolution is:

 
E =1/2 G �t( ) �2

 (4.114)

where �t is one-half period and � is the strain per pass. The critical energy density decreases 
rapidly with an increase in temperature while the stored energy decreases less rapidly. As 
the temperature is increased, the limit is reached where tears propagate rapidly and region 
3 behaviour is observed. In some cases the transition is directly into region 4.

Any change in material properties, such as molecular weight distribution, which increases 
the tear energy will improve the milling. In a comparison of two polybutadienes, White  
and Tokita [9] found good mixing with a broad range of conditions in region 2, for a 
material with a broad molecular weight distribution, as summarised in Table 4.1. A 
narrow molecular weight material with the same Mooney viscosity only gave region 
3 behaviour with severe crumbling. A broad molecular weight distribution improved 
carbon black dispersion.

Region 3 behaviour is characterised by crumbling and tearing. The band may be unable 
to support its weight and hang as a bag from the roll. As the temperature increases 
further, the material changes from opaque to transparent, the relaxation time decreases 
rapidly and the fl ow becomes nearly fl uid. Both the Weissenberg and Deborah numbers 
are small in this region. The fl ow in the nip region approaches that for a power-law fl uid. 
Near the upper transition region, the surface becomes rippled rather than torn, and the 
limit is set by hydrodynamic stability [10]. An increase in temperature, a decrease in 
roll speed and an increase in gap opening all promote transition to region 4. The fl ow 
behaviour in this regime was discussed in Section 4.1.

If the transition to region 4 is hydrodynamically controlled, there will be a critical 
Weissenberg number which characterises the process. In a series of experiments with 
constant roll speed and geometry, White and Tokita [6] found that the transition 
occurred at a temperature corresponding to the same relaxation time for different 
materials, as summarised in Table 4.2. This agrees with the constant Weissenberg 
number criterion.

Table 4.1. Milling of polybutadiene
Material A B
Mooney viscosity ML-4 40 40
Intrinsic viscosity 2.25 3.6
Critical energy density (dynes-cm/cm3) 3 x 106 15 x 106

Shear modulus (dynes/cm2) 5.1 x 105 1.9 x 105

Relaxation time (s) 400
severe crumbling

3000
good band
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Table 4.2. The Region 3 � 4 transition
Polymer Transition Temperature (°C) Relaxation Time (s)
Polybutadiene A 200 27
Polybutadience B 170 35
SBR 195 35
EPR 195 35

4.3 Heat Transfer

So far all of the fl ows considered have been isothermal. When the rubber is subjected to 
the high shears in the nip, energy is dissipated as heat by viscous dissipation. The balance 
between heat generation in the bulk and heat loss to the rolls and surroundings determines 
the rubber temperature. In many processes, such as internal mixers, shear heating is the 
primary means of raising the stock temperature. Good temperature control is necessary 
to prevent degradation and, in the presence of vulcanising agents, scorchiness.

The total force transmitted to the rubber by the rolls is proportional to the torque. The 
torque per unit roll length may be calculated for a Newtonian fl uid by integrating the 
wall shear stress times the radius over the contact area [3]:
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where the torque is T and #R corresponds to the position where the band separates from 
the roll. Then the rate of energy transmitted is:

  

�qin = 2�NT

=
12��UoRN

�
f �1,�R( )

 (4.116)

Heat transfer by conduction to the roll can be considered as that of a thick slab with 
initial temperature Tb brought suddenly into contact with a surface having temperature 
Tw. The surfaces are in contact for the residence time in the nip. The material properties 
are thermal conductivity k and thermal diffusivity �. Then the transient heat transfer 
from the slab is given by:

 
qout = 2k Tb �Tw( ) t / ��( )1/2

 (4.117)
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Then the rate of heat transfer is:

  
�qout = �k Tb �Tw( ) / ��( )1/2{ }

t�32

 (4.118)

At steady-state the rate of energy dissipation equals the rate of heat conduction:

  
�qin + �qout = 0

 (4.119)

Substituting Equations (4.116) and (4.118) into this equation and solving for the bulk 
temperature yields:

 
Tb = Tw +

12��R2N1/2 ��( )1/2

�k
f �1,�R( )

 (4.120)

Thus the rubber temperature will increase with roll surface temperature because of a 
lower driving force for heat conduction. The temperature will also increase with roll 
speed and decrease with gap width, both of which raise the shear rate, hence increasing 
the rate of viscous dissipation.

In deriving this expression, it was assumed that the material properties were independent 
of temperature. In practice the viscosity is strongly temperature-dependent so that the 
energy equation and momentum equation are strongly coupled. In this case the equations 
cannot be solved analytically.

Consider the energy equation for one-dimensional fl ow between parallel plates:
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where the Newtonian viscosity has the temperature-dependence:

 � = �o exp(–b(T – To)) (4.122)

Choose the following dimensionless variables:

 * = b(T – To) (4.123)

 V = u/U (4.124)

where: 

 U = Q/2ho

 X = x/L (4.125a)
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 y = y/h (4.125b)

 � = Lt/U (4.126)

Dividing Equation (4.121) by ,c and substituting the dimensionless variables, the energy 
equation becomes:
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where the dimensionless groups have been extracted:

 Gz = Graetz number = (Uh2,c)/kL (4.128)

 Gr = Griffi ths number = (�oU2)/k ...  (4.129)

The Graetz number is a measure of the rate of heat convection compared to heat 
conduction and the Griffi th number is a measure of the rate of viscous dissipation 
compared to the rate of heat conduction. Finally, the dimensionless group *w  =b(Tw – 
To) is a measure of how the temperature-dependence of viscosity affects the fl ow fi eld.

In the case of the two-roll mill, L is the roll radius, the scaling velocity is the peripheral 
roll speed, h is the nip halfwidth and Tw is the roll surface temperature. 

Several distinct cases may be recognised. If the Graetz number is small compared to 
unity, the convection term is negligible and the temperature fi eld is locally determined. 
If the Griffi ths number is small as well, dissipation is not important and the fl ow is 
essentially isothermal. If the Griffi ths number is large, the fl ow becomes adiabatic. If 
the Graetz number is large and the Griffi ths number is small compared to unity, the 
fl ow is essentially determined by the upstream temperature; streamlines are isotherms. 
If the Griffi ths number is of order one, then the energy and momentum equations 
are rheologically coupled and must be solved simultaneously. In scale-up it is usually 
desirable to maintain the same temperature history for the process. This will be the 
case if the Graetz number and Griffi ths number are kept constant in scale-up as well 
as *w constant.

The analysis for heat transfer with a Newtonian fl uid presented before equated the energy 
dissipation to the heat conduction. This was equivalent to a large Griffi ths number and 
a small Graetz number where convection can be neglected.

A simple analysis of heat transfer yields the average temperature. Even when the predicted 
or measured temperature is reasonable, hot spots may arise in the bulk of the material 
because of viscous dissipation. If the Griffi ths number is large, this may be an important 
source of trouble in control and the temperature distribution required can be predicted 
only by a numerical solution to the fully-coupled momentum and energy equations.
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4.4 Scale-up Alternatives

A number of alternative scaling rules are possible for calculating the new operating 
conditions when transferring a process from the laboratory mill to the plant 
equipment:

l.  Simple geometric similarity

2.  Constant maximum shear stress

3.  Constant total shear strain

4.  Constant mixing time

5.  Constant stock temperature history

6.  Constant Weissenberg/Deborah numbers

7.  Constant Graetz/Griffi ths numbers

Most of these criteria refl ect a particular physical process which is believed to control 
the rate and/or stability of the process. For example, the constant maximum shear 
stress criterion implies that agglomerate break-up is critical in determining the mixing 
quality while the constant total strain criterion implies that striation thickness is the 
crucial quantity. Some of these criteria may be mutually compatible, including the 
constraints imposed by existing mill geometry, but in other cases the criteria may be 
incompatible.

In the usual scale-up problem, a trial formulation of material is prepared on a small 
laboratory mill having a radius (R1) and nip gap (hol) by mixing for time (tl) at a roll 
speed (N1). The mass temperature increases from room temperature to T1 while the 
roll surface temperature is kept at Tw1. The material behaves essentially as a Newtonian 
fl uid (with a temperature-dependent viscosity given in Equation (4.122). The fl ow rate 
through the nips under these conditions is Q1. The plant mill has a radius (R2) and gap 
setting (ho2) which is adjustable over a narrow range. The mill speed (N2) and mixing 
time (t2) are to be selected so that the mixture maintains its quality while processing 
material at a rate (M2).

One parameter which has not been specifi ed is the size of the bank. This represents a 
reservoir of material which feeds the nip. If the rubber only made one pass, then the 
bank size would not matter. However, when the mill is operated as a batch mixer, each 
element of rubber spends only a fraction of the total mixing time in the nip. If the 
fl ow rate through the nip is known and the total amount of material on the rolls in M, 
the quantity to be mixed in time t, then on the average, each element makes P passes 
through the nip:
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 P = Qt/M  (4.130)

With a given mill, the amount of rubber in the nip and on the roll is essentially constant 
so that the effect of increasing the bank size is to decrease the number of passes per 
element if operating  conditions are constant. Hence the average production rate M/t 
is an important variable, especially when the total shear strain, the product of shear 
strain per pass times the number of passes, is used. The fi rst possible scale-up rule is 
to keep the ratio of gap separation to roll radius constant for both mills but specifying 
the roll speed, mixing time or production rate by independent criteria. The geometric 
constraint is:

  

R1

ho1

=
R2

ho2
 (4.131)

The operating variables N2, t2 and M2 cannot be fi xed without three further constraints 
on the system. In some cases these are provided by external process considerations such 
as the necessity to process the dump from an internal mixer in the time interval between 
dumps, which fi xes M2 and t2 The third constraint can be provided by one of the other 
scaling criteria or by an arbitrary decision such as keeping the roll speed constant or 
the peripheral roll velocity constant. Without further guidance, the choice is arbitrary. 
In many commercial mills, the criterion in Equation (4.131) is not met because of 
limitations in mechanical design and the roll rate of rotation is fi xed or adjustable to a 
small choice of values. Therefore in general the criterion of geometric similarity is not 
of use in rubber mills.

The second possible choice of scaling laws is that the maximum shear stress must be 
maintained constant, as was previously discussed. For a Newtonian fl uid, the results 
are:
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where the viscosities may not be equal if the temperature histories are not the same. If the 
fl ow rate Q is approximated by Equation (4.89), then the roll speed ratio becomes:
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�2
 (4.133)
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Because the viscosity ratio will be nearly unity in scale-up, the constant roll speed criterion 
often cited can be seen to be equivalent to a maximum shear stress criterion.

If the fl uid behaves as a power-law rather than Newtonian fl uid, the expression then 
becomes:
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 (4.75)

and with substitution of Equation (4.89):
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In constrast to the case for Newtonian fl uids, the scale-up of power-law fl uids always 
depends upon the roll geometry. The criterion of maximum shear stress does not 
explicitly place constraints upon either the temperature or the mixing time for the 
batch. In the scale-up process, the temperature may not be the same for the two mills. 
The temperature requirements will be considered shortly, but consider for now that the 
temperature histories, hence �l and �2, are known. Then to calculate the mixing time, 
one possibility is to assume that a certain fraction of the particles per unit fl uid volume 
are broken per pass through the nips. To obtain the same size reduction in scale-up then 
requires that the number of passes (Equation (4.130)) be held constant:
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=
Q2t2

M2  (4.135)

Substituting Equation (4.89) yields:
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 (4.136)

and the roll speed ratio is given by Equation (4.133). Thus the mixing time is proportional 
to the amount of material to be mixed and inversely proportional to the roll size.

If there is an upper temperature limit because of degradation or scorching, then this 
scaling law might confl ict with the maximum temperature requirement, as discussed 
below. A less serious limitation on these equations is that unequal roll speeds has been 
neglected. This effect can be incorporated by using Equations (4.44) and (4.46) as the 
starting points for an analysis similar to that just presented.

The average shear strain per pass through the nip has been calculated in Equation (4.86). 
The total shear strain criterion becomes:



102

Mixing of Rubber

 �T = �1P1 = �2P2 (4.137)

If the amount of material is the same, then Equation (4.96) results. More generally, 
this is not the case. Combining Equations (4.86) and (4.130) yields an expression for 
the mixing time:
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 (4.138)

If the mills have strict geometric similarity, then a constant maximum stress criterion 
can be used to set the ratio of roll speeds and Equations (4.136) and (4.138) yield the 
same predictions for mixing time. Even when the rolls are not geometrically similar, the 
two criteria are compatible. This will not be necessarily true for internal mixers.

In the transfer of the process to the larger mill, it is usually desirable to remain in the 
same fl ow regime, and in particular, it is necessary to avoid regions 1 and 3 where fl ow 
instabilities occur. The fl ow will be hydrodynamically similar if both the Weissenberg 
and Deborah numbers are kept constant. The Weissenberg number criterion, from 
Equation (4.110), becomes:

  

�1R1N1

ho1

=
�2R2N2

ho2
 (4.139)

and the Deborah number criterion, from Equation (4.112) becomes:

 %1N1 = %2N2 (4.140)

The ratio of roll speeds is fi xed by the Deborah number requirement. If the temperature 
history is the same for the two mills, then the relaxation time is the same and this criterion 
becomes the same as for a Newtonian fl uid. In many cases, the ratio of relaxation times 
equals the ratio of viscosities so the criterion is preserved. The Weissenberg number 
criterion then fi xes the roll geometry:

 

R2

R1

=
ho2

ho1

which is the requirement of strict geometric similarity. In most cases, this criterion 
cannot be met. In scale-up, the radius increases while the nip gap is nearly constant. 
Then scaling at constant Deborah number, or often the same roll speed, increases the 
Weissenberg number. This can lead to fl ow instability and processing diffi culties in scale-
up. If, however, it is decided to keep the Weissenberg number constant and to allow the 
Deborah number to change:
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 (4.141)

The Deborah number will decrease with scale-up at constant Weissenberg number so that 
the fl ow will remain stable. The roll speeds can be set by solving Equation (4.139):
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and this value used in Equation (4.138) to fi x the mixing time at a constant total 
shear.

The constant mixing time criterion is not a very useful concept for scale-up. The idea 
originated from the problem of controlling cycles in an internal mixer, where the constant 
mixing time criterion can be equivalent to a constant total shear criterion, as discussed 
in Chapter 5. This is not the case in mills and the mixing time in scale-up is not simply 
related to any fundamental physical process.

The solution of the coupled energy and momentum equations is very diffi cult, especially 
for viscoelastic materials. However, if a material has been successfully mixed on a small 
mill, the temperature history of the material will be the same on a larger mill if the 
dimensionless energy Equation (4.127) remains unchanged with identical boundary 
conditions. This will be the case if the Graetz and Griffi ths numbers are held constant 
and the wall temperatures are the same. The thermal diffusivity is essentially constant 
so the Graetz number criterion becomes [Equation (4.128)]:

  

U1h1
2

R1

=
U2h02

2

R2
 (4.143)

and the Griffi ths number criterion becomes [Equation (4.129)]:

  
U1

2 = U2
2

 (4.144)

This fi xes the ratio of roll speeds:

  

N2

N1

=
R1

R2
 (4.145)

and the mill geometry:
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If the nip gap is adjustable then it may be possible to meet these criteria. For many 
commercial mills, however, neither of these criteria can be met. In most cases, the roll 
speed is nearly constant and the nip gap increases slightly so that the Graetz number 
increases slightly. However, the Griffi ths number tends to increase as the square of the 
radius so viscous dissipation is much more signifi cant on larger mills and temperature 
control may become a problem in scale-up. Finally, it is important to calculate the power 
requirements for the mill. The torque per unit mill length was calculated in Equation 
(4.115) and the power requirement in Equation (4.116):

  
P = �qin =

12��UoRN
�

f �1,�R( )
 (4.116)

If the geometric similarity is preserved, then the power requirements in scale-up 
become:
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 (4.147)

In general this is not the case and the full Equation (4.116) must be used.

4.5 Commercial Mills

Mills supplied by a variety of manufacturers have nearly the same construction with the 
same features. These include either waterchilled or oil-heated rolls, scrapers, heavy-duty 
oil-bath type gears and bearings, and rugged construction. Typical mill sizes and their 
capacities are summarised in Table 4.3 [13].

Table 4.3 Mill capacities
Mill Size 
(diameter x length) 
(in)

Mix Capacity (lb) Banbury Size for Mix 
Capacity

Banbury Size as 
Sheet-off Mill

14 x 30 20/20 1 1
16 x 42 30/50 1 1
18 x 48 45/70 1 1
22 x 60 75/125 3 9/11
24 x 72 125/200 3 9/11
26 x 84 150/250 3 11.27
28 x 84 175/300 3/9 11.27
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4.6 Summary

In this chapter, considerable attention has been given to obtaining analytical solutions 
to the problem of fl ow in a two-roll mill. Following an outline of the solution for a 
Newtonian fl uid, the effect of non-Newtonian behaviour was considered. Viscoelastic 
materials such as rubber exhibit a number of fl ow instabilities which are not observed  
for purely viscous fl ows. The effect of various physical processes acting as constraints 
on scale-up was also examined. Scale-up at constant maximum shear stress, total shear 
strain and Deborah number are mutually compatible. However, viscous dissipation 
is more important for larger mills so that temperature control can become a major 
problem in scale-up.
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Internal Mixers

AuthorAuthor 5
In the previous chapter it was shown how the fl uid mechanics equations could be solved 
for the mixing on a two-roll mill. The relationship between shear stress, total shear 
or power and the geometry, material characteristics and operating parameters were 
derived. Because of the complex geometry of an internal mixer, a complete analysis of 
fl ow is not possible. However, the operation can be broken down into its component 
parts, the essential features of which can then be analysed in a manner similar to the 
last chapter.

5.1 Flow in an Internal Mixer

The working part of an internal mixer consists of a cylindrical chamber holding two 
rotors as shown schematically in Figure 5.l [1]. The rotors are driven by a motor and 
gears. In small mixers the speed may be adjustable but in large mixers the rotor speed 
is usually limited to one or two values. The rubber and solid components are fed into a 
hopper or drop door in the side of a chute which opens into the mixing chamber. Liquid 
components may be added through the hopper or injected directly into the chamber. A 
hydraulically-operated ram closes the top of the chamber, subjecting the rubber mix to 
a controlled pressure. In the operating cycle, the components are added to the chamber 
with or without rotor movement. The cycle begins when the ram squeezes the rubber 
into the region between the rotors. After the mixing time, a drop door at the bottom of 
the chamber opens and the batch falls out of the mixer and is transported to the next 
processing operation.

The rubber may initially be in the form of bales, sheets, strands, pellets, granules or 
powders. With the standard operation, rubber is dropped into the chamber fi rst followed 
by the additives. In the commonly used ‘upside-down’ batch, the additives are placed 
in the chamber fi rst. Liquid additives may be fed through the chute or injected directly 
into the mixing chamber. All of the additives may be added at the beginning of the cycle 
or some may be charged at a later time in the cycle in a prescribed schedule.

Often the rubber is cold-fed in bulk form into a chamber which may be hot from the 
previous cycle. Because the rubber does not readily fl ow, the fi rst part of the cycle shreds 
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Figure 5.1 Schematic view of an internal mixer
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the bulk polymer so that it will fi ll the chamber. The ram pressure forces the rubber 
into strong contact with the rollers which raises the rubber-to-metal friction force. This 
enhances the shredding and nip-fi lling operation.

Simultaneously with the size reduction, the stock temperature increases because of energy 
dissipation. Some of this heat is conducted away through the water-cooled rotors and 
chamber wall. The large mechanical forces and temperature rise cause mechanochemical 
degradation which lowers the molecular weight of the rubber in the mastication process. 
Because of the decrease of viscosity as the temperature increases and molecular weight 
decreases, the torque required for rotor rotation decreases following the initial peak 
when the ram is closed, as shown in Figure 5.2 [2].

Initially the mixture consists of a rubber phase and a completely separated additive phase. 
As mixing proceeds, the additives are incorporated as a disperse phase in the continuous 
rubber matrix as shown schematically in Figure 5.3. Solid particulate additives such as 
carbon black usually reinforce the rubber and raise the viscosity. This causes the torque 

Figure 5.2 Schematic Brabender mixing curve
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to increase rapidly to a peak at time tb as 
the particulates form the dispersed phase. 
The continuing increase in temperature 
counteracts this effect and the torque 
decreases again until it reaches a steady-
state value which holds until the end of 
the mixing cycle at time td. The mixing 
time tc corresponds to the experimentally 
observed maximum in the die swell of 
extruded products which occurs when 
the bound rubber level reaches a plateau 
value and carbon dispersion has reached 
steady-state (Figure 5.4).

An idealised cross-section of the mixing 
chamber is shown in Figure 5.5. Although 
the details of the fl ow pattern depend 
upon the rotor and chamber geometries, 
the same principles apply to all internal 
mixers. The moving rotors cause drag 
fl ow between the tip of the blade and 
the chamber wall as well as between the 
shaft body and the wall. Usually the tip 
clearance is one-fourth to one-tenth of 
the clearance between the shaft and the 
wall so that the tip is the region of high 
shear stress. A pressure gradient across 
the tip opposes drag fl ow in the fl ight 
clearance but pressure fl ow is in the same 

direction as drag fl ow for the shaft. The space between shafts is usually large compared 
to wall clearance so little shear occurs in this region. However, some rotors are specially 
designed to give shear in this region.

The rubber matrix is swept in front of the rotating fl ight of the rotor wing with some 
of the rubber passing through the gap. This fl ow is very similar to the fl ow in the nip 
region of a calendar. Simultaneously, fl ight curvature moves the rubber from end-to-
end in the chamber to ensure good spatial mixing as well as high shear mixing. The 
rotors move in opposite directions and the wings are designed so that portions of the 
batch move from one rotor to the other. This random transfer between rotors enhances 
simple mixing.

Figure 5.3 Incorporation of additives
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Figure 5.4 Defi nition of tc

Figure 5.5 Mixing chamber cross-section

Figure 5.4 Defi nition of tc
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5.2 Analysis of an Internal Mixer

The fi rst analysis of an internal mixer was reported by Bolen and Colwell [3, 4] who 
used the simplifi ed geometry shown in Figure 5.6. The following symbols are used:

 Ql = drag fl ow in channel

 Q2 = drag fl ow at fl ight tip

 Q3 = pressure fl ow in channel

 Q4 = pressure fl ow at tip

 g = tip clearance (constant)

 h = channel clearance

 e = tip width

 s = length of rotor

 N = rotor speed

 Dc = diameter at shaft

 Dt = diameter at tip

 �c = viscosity of fl uid in channel

 �t = viscosity of fl uid at tip

 �P = pressure drop across fl ight

The viscosity at the tip need not equal the viscosity in the channel if the viscosity is shear 
dependent, even for isothermal fl ow. The directions of the four fl ow components are 
shown in Figure 5.6 when the barrel is considered to move relative to a stationary rotor. 
It is assumed that the radius of the rotor is large compared to the gap clearance so that 
the fl ow can be treated locally as fl ow between parallel plates in a Cartesian coordinate 
system. A constant viscosity is assumed in each region and the fl ow is treated locally. 
Then the solution for the drag fl ow components becomes:

 Q1 = �DcshN/2 (5.1)

 Q2 = �DtsgN/2 (5.2)

which is the total drag fl ow between parallel plates having a separation h (or g) and a 
relative velocity

 V = �ND  (5.3)
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The pressure difference between the front and rear of the fl ight �P arises because of the 
difference in channel depth between the tip and the wall and the shaft and the wall. The 
pressure fl ows for parallel plate geometry become:

 
Q3 =

�sh3�P
12�Dc�c

 (5.4)

Q4 = sg3�P/12e�t (5.5)

Because the mixer is a closed system, the fl ow past the tip must equal fl ow in the 
channel:

Figure 5.6 Idealized dispersive mixer
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 Q1 + Q2 = Q3 + Q4 (5.6)

Substituting Equations (5.1)-(5.5) and solving for the pressure drop yields:

  

�P =
6�N Dch�Dtg( )

h3

�Dc�c

+
g3

e� t

�

�
�

�

�
�

 (5.7)

Similar to the analysis used in the last chapter [Equation (4.85)), a velocity-average 
shear rate can be defi ned for both the tip and the channel:
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�
 (5.8)

This is the same as a mass-averaged shear rate.

Let the ratio of pressure to drag fl ow be:

 f = Qp/Qd (5.9)

 fc = Q3/Q1 = f for channel (5.10a)

 ft = Q4/Q2 = f for tip (5.10b)

Then the average shear rate is a function of f [3] and is given by:
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 (5.11a)

if f > 1/3
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 (5.11b)

if f > 1/3 < f < 1/3
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1+ 3f( )4
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 (5.11c)

if f > 1/3

where: 
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 Q = Q1 and x2 = h2 in the channel, and

 Q = Q2 and x2 = g2 in the tip.

The velocity profi le for combined fl ow between parallel plates [5] is given by:

  
vz =

v
H

y 	
y H 	 y( )

2�
dp
dz

 (5.12)

for plate separation H and relative velocity V. Then the shear rate may be calculated:
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1

2�
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 (5.13)

The maximum shear stress will occur in the tip region where:

 H = g (5.14a)

 V = �DtN (5.14b)
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The maximum shear rate and maximum shear stress for a Newtonian fl uid occur at y = g:
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The torque on the rotor is given by:
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 (5.16)

Substituting into Equation (5.13) the appropriate values of V and H for the tip and for 
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the channel, and using a Newtonian fl uid yields an expression for the torque T:
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 (5.17)

where:

 a = h/g

 x = DC/Dt

and the shaft power required becomes:

P = TN (5.18)

In a real blade, the tip clearance is not constant but rather it has a taper. Prager and 
Talbot, as reported by Bergen [6], considered the case for fl ow past a tapering tip. In 
that analysis, it was assumed that there is no pressure fl ow across the rotor tip. That 
is incorrect because it neglects the change in fl ow channel depth at the rotor blade. 
Consequently the analysis of dispersive mixers in Bergen’s paper is also incorrect although 
it may be a useful approximation in some cases.

The correction for change in blade tip clearance can be incorporated into the analysis 
of Bolen  and Colwell as follows. The pressure and drag fl ows in the channel Q1 and 
Q3 remain unchanged. The fl ow equations for the tip become:

 
vz,drag =

�NDty
g(z)

 (5.19)

 
vz,pressure =
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 (5.20)
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Q4 = s

y g � y( )
2�

dP
dz0

g

� dy

 (5.22)

Assuming that the tip clearance decreases linearly with distance:

 g(z) = go ñ mz/e  (5.23)

the fl ow rate expressions become:
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Again using Equation (5.6):

 Q1 + Q3 = Q2 + Q4 (5.6)
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Substituting into Equation (5.23) and integrating yields:
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Substituting from Equation (5.26) for � yields:
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 (5.30)

which reduces to Equation (5.7) when the tip clearance is constant (m = 0). The ratio 
between the two cases, tapering clearance or a constant clearance with the same average 
gap, depends upon the specifi c geometry, but in every case with a decreasing gap, the 
tapered channel yields a higher pressure drop, hence greater pressure fl ow and less fl ow 
beneath the tip.
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With a tapered rotor tip, the maximum shear rate and shear stress can be calculated in 
a manner similar to that for constant channels:
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The maximum occurs where g is smallest, which for a linearly tapering tip is:

 g = go – m
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The maximum shear stress depends upon the geometry and operating parameters in a 
complicated manner, as shown by combining Equations (5.30) and (5.31). However, 
the ratio of maximum shear stress with and without taper is on the order of:

  

� taper

�const

�
go

go 	 m
 (5. 32)

The analysis presented for an internal mixer has assumed that it can be approximated 
as a pair of rotors, each of which operates independently in a uniform cylindrical 
chamber. In actual mixers the chambers housing each rotor are connected and transfer 
of material from one rotor to another is an important mechanism for obtaining good 
simple mixing. However, the clearances between the tip of one wing and the body of 
the adjacent shaft are usually too large for signifi cant shear to occur in this region. It 
may be necessary in some cases to allow for the fact that shearing does not occur in a 
part of the periphery when calculating total shear or power requirements. The ratio of 
maximum shear rates at the tip and in the channel can be calculated:
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from Equation (5.11), and using Equations (5.1) and (5.2):
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Using typical values for a Banbury 11D mixer (see Section 5.7) this ratio has a value: 

  

��c

��t

� 0.061

Thus the shear stress generated at the rotor tip is signifi cantly greater than that generated 
by the rotor shaft.

The total shear strain per revolution of the rotor must be weighted by the relative contact 
area of the two kinds of surface to average over the entire mixer volume:
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 (5.35a)
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5.3 Alternative Mixer Models

The analysis used in section B follows the method proposed by Bolen  and Colwell [3]. 
Other models have also been described in the literature.

Mohr [7] considered the power requirements in mixing with the following analysis. The 
power P per unit volume in shearing is given by:

  

dP
dV

= ���

 (5.36)

This expression must be integrated over the total mixing time tm where the total shear 
achieved is M. Then the average shear rate is calculated:

  
�� = M / tM

 (5.37)

and if the material behaves as a power-law fl uid:

  � = k��n
 (5.38)

and the power requirement becomes:

  

P = kV��n+1

= kV
M
tm

�

�
�

�

�
�

n+1

 (5.39)
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The analysis is far too simplifi ed to use for calculating power requirements directly, but 
the utility of Equation (5.39) in scale-up will be examined in a later section.

Guber [8] considered the rotor geometry shown in Figure 5.7. The rotor has two blades 
with lengths �1 and �2, The gap and land length at the rotor tip are ho and �o. The fl ow 
channel is divided radially into m sections, each of which has a cross-sectional area fi 
and a channel depth hi. An analysis of the fl ow similar to that in Section 5.2 yields an 
expression for the power consumption with a power-law fl uid:

  

P = 2k �N( )n+1
�1 0.5n+1 + 0.865n+1( ) + 2�20.75n+1( ) F

+
Dk

ho

�

�
�

�

�
	

n+1

ho� �1 + �2( )
 (5.40)

Figure 5.7 Geometry of an idealized rotor
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where: 

 
F =

Dk

hi

� 2
�

�
�

�

�
	

n+1

fi
i=1

m

�
 (5.41)

and Dk is the outer chamber diameter. Equation (5.40) has the form:

 P = f(geometry) k Nn+lU3�  (5.42)

where U is a scaling length and � corresponds to a fi lling parameter. For two geometrically 
similar mixers, the scaling-law for power requirements becomes:

  

P1

P2

=
k1

k2

N1

N2

�

�
�

�

�
�

n+1

U3�

 (5.43)

where:

  
u =

D1

D2

=
�11

�12

=
�21

�22

=
ho1

ho2

=
�1

�2

and

 � = F1/F2

This is the same result as predicted from Mohr’s analysis where:

 N�1 / tm
 (5.44a)

 V�U3

 (5.44b)

and is similar to the equivalent expression derived in Section 5.2 for power-law fl uid 
[Equation (5.17)].

Starov and co-workers [9] compared the power requirements to achieve the same 
dispersion on a single machine for a synthetic. rubber as a function of ram pressure and 
rotor speed. This is equivalent to allowing the mixing time to vary at constant total work 
with a variable shaft power (see Section 5.7). They found the empirical expressions:

 P = A + B Pr (5 .45a)

 P = C + Dn (5.45b)

where P is the power in kW and Pr and n are the ram pressure and rotor speed. The data 
is summarised in Table 5.1. This correlation is not generally useful because it does not 
include geometry and material variables. For many rubbers, the power-law exponent is 
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approximately 0.2 - 0.3 in which case the seemingly linear response over a limited range of 
operating variables for a constant geometry and material is a reasonable approximation 
to the more general analysis presented earlier. The operating curves for a single machine 
often have a simple expression such as Equation (5.45). However, these are usually 
approximations to more complex equations such as Equations (5.17)-(5.18) or (5.39), 
and the simple operating lines would give incorrect predictions if used for scale-up.

Stupachenko, Bebris  and Pukhov [10, 11] considered an heuristic model for the mixing 
process. In their model, they assumed all materials were loaded simultaneously; the 
shear gradient was constant; material properties were constant; machine temperature 
was constant; and the rate of particle incorporation was rapid compared to the rate of 
mixing.

Let:

 Qp = rate of mix production

 �* = mix viscosity

 P = power

  
Vp

*�  = proportion of volume as powder in mix

  
Vp�  = proportion of volume as powder not in mix

  
Vp� (0)  = initial powder volume fraction p

 � = time

Then the rate of mix production is given by:

Table 5.1 Power requirements (Pr) for mixing
n (rpm) Pr range (kg/cm2) A (kW) B
32 0.88-1.32 4.05 0.57
50 0.66-1.32 5.26 1.41
80 0.88-1.32 7.76 2.41
100 0.66-1.32 9.70 2.36

Pr (kg/cm2) N range (rpm) C (kW) D (kW/rpm)
0.66 32-100 1.25 0.1
0.88 32.100 1.8 0.1
1.32 32.100 1.25 0.12
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�p =

d
d�

Vp
* = k �*( )k P( ) Vp���

 (5.46)

and 

 
Vp� = Vp� 0( ) � �pd��

0

�

�
 (5.47)

which states that the rate of mix production is proportional to the amount of undispersed 
powder, and that the rate is a function of the shaft power (i.e., shear rate) and the 
material viscosity. The rate constants are assumed to have the form:

 k(�*) = Be-c�* (5.48a)

and 

 k(P) = k*P (5. 48b)

where B, c and k* are constants.

The time dependence of the material response is given by a two-dimensional linear 
viscoelastic model:

   

d2�

d�2
+

E1

�1

+
E1

�2

+
E2

�2

�

�
�

�

�
�
d�
d�

+
E1E2�

�1�2

=
E1E2

�2

d�
d�

 (5.49)

where: 

 E1 = initial elastic modulus

 E2 = elastic modulus

 �1 = steady shear viscosity

 �2 = viscosity of elastic after-effect (creep recovery)

 T = temperature

 �- = initial mix viscosity

 = �(0) �(T) � (.V*
p)  (5.50)

This expression becomes a power-law model following an initial transient. The viscosity 
components are given by:
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�(0) =
1

�aiVi

�1 =�*
d�
d�

�

�
�

�

	



m	1

�(T) = Ae	bT

� �Vp
*( ) = 1+ a1�Vp

* + a2 �Vp
*( )

2

The unit power in processing is:

 
Pu = k(P)�

d�
d�

 (5.51)

The heat balance is given by:

  

dQ
d�

= koPuV 	�F T 	 Tc( )
 (5.52)

and

 Q = (.VjCj,j)T (5.53)

where: 

 Q = heat input to rubber

 V = volume of rubber

 � = heat transfer coeffi cient

 F = heat transfer area

 Tc = cooling water temperature

 pj,cj = density and heat capacity of component j

Equations (5.46)-(5.53) can be solved on either a digital or analog computer to give 
development of power consumption, temperature, shear stress and effective fl ow rate 
(shear stress) versus time in an internal mixer. The parameters in the equations can 
be adjusted to fi t the observed data. Unfortunately no comparison has yet been made 
between the model and observations using independently measured model parameters. 
The calculated curves, shown schematically in Figure 5.8, exhibit the major features 
observed experimentally. The maximum in power consumption or shear stress occurs 
at the inclusion of all the powder into the matrix and corresponds to tb in Figure 5.2.
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Figure 5.8 Model calculations for an internal mixer
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This model represents an important advance on the work of Bolen and Colwell. The 
model used in Section 5.2 assumes a homogeneous material with time-independent 
behaviour. In particular, the period from startup to the incorporation of fi llers is neglected 
in that model and the effects of changes in particle size distribution and molecular 
weight distribution with mastication are neglected. The Bolen and Colwell model, while 
neglecting these important effects, does show how the geometry of the mixer affects the 
shear rate and shear stress.

The Stupachenko model, on the other hand, neglects the effect of geometry but 
incorporates the effect of changes in material properties. The two models can be 
combined however. A volume-average shear rate ��V

 can be calculated by weighting 
the contributions from the tip and the shaft, each calculated according to Equation 
(5.11):

   
��V = B1At ��t + B2Ac ��c

 (5.54)

where At is the face area of the rotor tips, Ac is the face area of the rotor shafts and Bi 
are weighting factors. For a given mixer, which fi xes the geometry, the average shear rate 
will vary with a fi xed rotor speed because of changes in viscosity with mixing. The shear 
rate calculated in Equation (5.54) can then be used in Equation (5.49) to give a more 
complete model. The main diffi culty in using this combined model is in determining how 
the material functions such as modulus and viscosity depend upon the incorporation of 
fi llers, mastication and other time-dependent variables. In some cases, however, estimates 
of the material behaviour, such as the temperature dependence of viscosity, can be made. 
Other material variables may be regarded as adjustable parameters in the model for 
calculation purposes if reasonable independent estimates cannot be made.

5.4 Heat Transfer in Internal Mixers

The model of Bolen and Colwell [3] neglects the effect of temperature on the mixing 
unless an empirical time-temperature history and a temperature-dependent viscosity are 
injected into the calculation. As with milling, the equations generally cannot be solved 
analytically if temperature profi les and histories are included. In scale-up the equations 
developed in Section 5.2 could only be used alone if the temperature histories in the two 
machines were identical. This is usually not the case and this can be a serious source 
of error if not recognised. The Stupachenko model incorporates a simple heat transfer 
model in Equation (5.52).

The main diffi culty in using this model is in obtaining a reliable estimate of the 
heat transfer coeffi cient. Kapitonov [12] estimated the heat transfer coeffi cient from 
experiments with a natural rubber mix on an RS-2 mixer which has open cooling and 
sprinkled water on the housing. He obtained values of 250 - 270 W/m2-oK for the 
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overall heat transfer coeffi cient and 1100 - 1200 W/m2-K for heat transfer from the 
mix to the inside wall.

Palmgren [13] considered the heat transfer problem in more detail. The overall energy 
balance may be written as:

 Wmotor – Wloss = Wrub + Ww  (5.55)

where: 

 Wmotor = motor energy consumption

 Wloss = frictional bearing loss, etc.

 Wrub = energy into rubber as heat

 Ww = energy removed by cooling water

This is the same as Equation (5.54) where:

 koPuV = Wmotor – Wloss

 Ww = �F(T – Tc)

 Wrub = dQ/d�

The overall heat transfer coeffi cient may be calculated as the sum of resistances in 
series:

  

1
�

=
1
�i

+
d
ks

+
1
�c

 (5.56)

where: 

 �i = rubber-metal heat transfer coeffi cient

 d = chamber wall thickness

 ks = thermal conductivity of metal

 �c = water-metal heat transfer coeffi cient

Most modern mixers have cooled rotors as well as cooled walls and often the area 
for heat transfer is approximately the same for the rotors and the chamber wall. The 
thermal conductivity of steel is 45 - 60 W/m-K but the wall thickness (d) varies with 
the manufacturers design. The rubber-to-metal heat transfer coeffi cient depends upon 
the rotor-wall gap, rotation speed, type of rubber and other variables. The range of 
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reported values is 1100 - 6000 W/m2-K but 1100 - 1500 W/m2-K seems a more reliable 
estimate. The cooling water-side coeffi cient �c depends upon the rate of water fl ow, 
the channel design and fouling of the channel walls. Typical values are 2000 - 10,000 
W/m2-K. Substituting these values into Equation (5.56) shows that resistance to heat 
transfer through the metal wall and to the cooling water make signifi cant contributions 
to the overall heat transfer coeffi cients.

An estimate of the heat transfer coeffi cient can be made by considering the model 
proposed by Jepson [14] which treats heat transfer at the wall as a scraped-surface heat 
exchanger. As the rotor tip in Figure 5.6 passes any point on the circumference, a new 
layer of material is laid down on that point. The temperature of the layer at the time of 
fi rst contact, t = 0, is the bulk temperature of the rubber in the mixer. The surface of the 
layer immediately assumes the mixer wall temperature with which it is in contact. Heat 
is transferred from the bulk of the rubber layer to its surface by conduction during the 
contact time which is the time interval between successive passes of the blade at that 
point when one layer replaces the previous layer.

Let the total heat loss during one revolution of the blade be:

   
qT = �cph T

�
	 Tb( )

 (5.57)

where: 

 ,,cp = density, heat capacity

 T
�
 = average temperature in layer

 Tb = bulk rubber temperature

 h = channel depth

 qT = heat loss per unit wall area

During the period of one revolution, the heat transfer to the wall is:

 qT = �i(Tw ñ Tb)/N  (5.58)

where: 

 �i = rubber-metal heat transfer coeffi cient

 Tw = metal-wall temperature

 N = rate of rotor rotation
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The average temperature in the rubber layer can be calculated from the unsteady-state 
heat conduction expression:

  

�T
�t

=
k
�cp

�2T
�y2

 (5.59)

with boundary conditions:

 t < 0, T(y) = Tb

 t > 0, T(O) = Tw

 T(h) = Tw

and the average layer temperature:

   
T� =

1
h

T y( )dy
0

h

�
 (5.60)

where: 

 k = thermal conductivity of rubber

 y = distance into the layer

Combining Equations (5.57)-(5.60) yields:

   

F s2( ) =
Tw �T

�

Tw �Tb

=
8
�2

e�s2

+
1
9

e�9s2

+…
�

�
�

�

�
	
 (5.61)

where:

 

s2 =
�2

4
ktc

�cph

 tc = 2�/Nn

 n = number of blade tips

and

 �i = �cphN(l ñ F(s2))  (5.62)

The effect of the fl ight clearance is accounted for by considering that there is a stagnant 
fi lm between the renewed layer and the wall. In this case:
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qT = �cph T

�
	 Tw( ) 	�cp� Tt 	 Tw( )

 (5.63)

where: 

 � = fl ight clearance

 
 
Tt  = calculated as in Equation (5.61)

Using this correction, the heat transfer coeffi cient for polyethylene was calculated [14] 
as shown in Figure 5.9. Using a typical value of 70 Btu/h-ft2-°F, the calculated heat 
transfer coeffi cient becomes 1250 W/m2-K which agrees well with the reported values 
for rubber in internal mixers.

As a consequence of the analysis, it can be seen that the heat transfer coeffi cient depends 
strongly on the tip clearance, which is fi xed for anyone machine and set of rotors, and 
it depends weakly on the rotor speed in the common operating range.

Machine manufacturers can increase the heat transfer by increasing the area for heat 
transfer, which most modern machines have taken to their limit. The wall thickness can 
be decreased but the limitation here is the strength of the shaft under torsion and the 
chamber walls under pressure. The rubber processor has no control over these variables. 

Figure 5.9 Heat transfer at the chamber wall
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The heat transfer coeffi cient on the water side can be increased by raising the water fl ow 
rate and the overall heat transfer can be increased by using chilled water which increases 
the temperature difference. One major factor in the water-side heat transfer coeffi cient 
is fouling of the walls. Particularly in older machines this is the single most important 
resistance to heat transfer and it can be a major cause for decreased performance as a 
machine ages.

The temperature of the rubber depends upon a balance between the rate of heat 
generation and the rate of heat removal. Often there is a maximum temperature limit 
for the material to prevent degradation or gelling or scorchiness in the product. This 
maximum allowable temperature criterion usually limits the maximum allowable rate 
of mixing in a rapid internal mixing.

5.5 The Effect of Ram Pressure

Until the late 1950s the standard internal mixer was operated with a ram pressure little 
over one atmosphere, often around 16 psi. At this pressure it was found that a large 
proportion of the mixing cycle was used to shred and masticate the rubber suffi ciently 
for the matrix to fi ll the fl ow channel. The rotors tended to slip past the stock and the 
ram oscillated up and down with the frequency of the rotors as the rubber entered 
and retracted from the nip between the rotors. Gradually the temperature increased 
suffi ciently for fl ow in the gaps to begin and effi cient mixing commenced. This is exactly 
the behaviour, observed in region 1 and the region 1  2 transition as described in 
Chapter 4 for milling instability.

The fl ow in region 1 where the stock oscillates in the nip is controlled by a critical stress 
at the rotor wall where slip occurs. The effect of increasing pressure is to increase the 
contact force between the rubber and the rotor surface. This has the effect of increasing 
the critical stress so that fl ow begins at a lower temperature. This means that effective 
milling begins much earlier in the cycle and because the stock temperature is lower at 
this point, the viscosity is higher and the power peak is higher. The higher viscosity 
means that particle dispersion is improved because shear stresses are higher. The rotor 
speed can be increased before slip occurs so that the mixing time for a constant total 
shear can be decreased.

The combined effects of these processes are shown in Figures 5.10 and 5.11. A typical 
set of power profi les for two ram pressures in the same RS-2 mixer with the same 
rubber recipe are shown in Figure 5.10 from the data of Bebris and co-workers [15]. 
When the ram pressure was doubled, the average power increased from 92 to 170 kW, 
but because the mixing time could be reduced from 13 to 6 minutes the total energy 
consumption remained essentially constant. The rotor speed was doubled for the high 
pressure process to 20 rpm versus 9 rpm for the low pressure process.
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Figure 5.10 The effect of ram pressure on motor power

Figure 5.11 
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Comes [16] examined the effect of ram pressure with Banbury mixers as shown in 
Figure 5.11. The mixing time could be decreased from 9 to 2 minutes for the same 
dispersion as the ram pressure increased from 12 to 90 psi. Typical processing data are 
given in Table 5.2. Because of the reduction in mixing times, high ram pressures, typically 
60 psi, have become the norm for modern internal mixers. Because of the rapid cycles, 
the times for charging and discharging mixers have become important factors in mixing 
cycles so that automatic loading and discharge techniques are often necessary.

Whitaker [17] examined the combined effects of increased ram pressure and increased 
rotor speed on the mixing time, power and work with a Francis Shaw Intermix K2A 
internal mixer and a standard styrene-butadiene rubber (SBR) recipe. In agreement with 
the previous results, he found that mixing time could be greatly reduced by increasing 
the ram pressure to 60 psi with little further change at higher pressures. The cycle time 
decreased with an increase in rotor speed when the mixing time was the time required 
to reach a fi xed stock temperature. The power required depended on rotor speeds as 
given in Equation (5.45):

P = C + Dn (5.45b)

where:

 C = 86.8 kW

 D = 1.235

for this case. The work required per unit mass decreased with increased rotor speed 
when a constant temperature criterion was used because less time was available for heat 
transfer to the cooling water.

In addition to reducing mixing time, increased ram pressures increased the motor 
horsepower requirements as shown previously in Equation (5.45a).

Table 5.2 High horsepower Banbury mixing
Stock Banbury 

Size
Cycle 
Time 
(min)

Rotor 
Speed 
(rpm)

 P  (hp) Pmax (hp) Normal 
Cycle 
(min)

Relative 
Increase in 

Productivity
SBR tread 11 2.5 40 864 1440 5.5 120%
Undertread 
cushion

11 4.5 40 640 1040 6.5 44

Natural truck 
tread

11 5.5 40 448 800 7.5 36

Mechanical 
goods

3A 2.3 100 285 402 4.7 104

PVC 
(plasticized)

3A 2.0 100 260 400 3.25 62
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5.6 Commercial Internal Mixers

The three major European and American lines of internal mixers are the Farrel-Bridge 
Banbury mixers, the Francis-Shaw Intermix mixers and the Werner-Pfl eiderer GK Series N 
Internal mixers. The mixing chamber volumes, loading capacities, operating speeds and 
power requirements for each of these equipment lines are given in Tables 5.3 - 5.5.

Banbury mixers are available in a size range from the small laboratory Midget mixer 
with an 0.67 lb capacity to the large production model F620 with a capacity of 930 lb. 
With the 1000 fold increase in mixing capacity, the rotor speed decreases from a range 
of 45 - 336 rpm for the Midget to a single speed of 42 rpm for the F620. In the range 
of production units, the speed range is narrower, decreasing from 60 - 120 rpm for 
the smallest production unit, the Banbury 1 unit. Despite the large change in capacity 
and rotor speed, the power intensity, defi ned as the motor horsepower per pound of 
charge, remains in the range 0.8- 3.7 hp/lb for all mixers at low ram pressures and 
1.5- 6.7 hp/lb for high ram pressures. Machines are available in either the normal or 
high pressure version. Cooling channels may be either through-drilled channels in the 
sides and rotors, or cored sides and rotors which increase the heat transfer area. The 
machine operation can be automatically controlled with automatic feed and discharge 
handling if desired. Special consideration has been given to the mechanical design of 
the system, particularly to the gear drive, to enable rapid mixing under high pressures 
which generate large torques on the rotor shafts. The shape of the Banbury 2-wing and 
4-wing rotors are shown in Figure 5.10.

In outward appearance the Shaw Intermix (Table 5.4) looks similar to the Banbury mixer 
although there are many differences in details of the mechanical construction. In this 
system, drop doors, automated operation, sturdy gears and cored cooling are part of 
the design as with Banbury mixers. The main difference is in the shape of the rotors as 
shown in Figure 5.12. The clearance between the nogs on one rotor and the shaft of the 
other rotor is smaller so that milling-type shear is signifi cant in the region between rolls 
which is not the case for the Banbury. Also the nog, or wing surface, has a much larger 
proportion of the total area than with other rotors. Because of the difference in diameter 
between the shaft and the wing, the nip between the nog and shaft has a friction ratio of 
1.39:1 [17]. Because of this rotor design a larger proportion of the material is subjected 
to shearing fl ow at any instant than would be the case with Banbury rotors. This means 
that the balance between dispersive and shear mixing will be altered and the stability 
limits to operation will be changed. The Intermix is available in sizes ranging from the 
laboratory mixer with a 2 lb capacity to the largest production unit KIO with a 1200 lb 
batch capacity. Unlike other manufacturers, all Shaw machines operate at 60 - 80 psi ram 
pressure. The power intensity ranges from 0.5 - 5.2 hp/lb for the production units with 
operating speeds from 16 - 66 rpm. For batch capacities comparable to the equivalent 
Banbury mixer, the Intermix machine operates at approximately the same speed and 
power intensity for low speed production but the Intermix operates at 2/3 speed and 
the same power intensity for high speed production.
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The Werner-Pfl eiderer GK Series N 
mixers (Table 5.5) have the same 
appearance and mechanical design 
features common to the Banbury 
and Intermix machines. The primary 
difference from the other units is 
is in the rotor design as shown 
in Figure 5.12. In common with 
Banbury rotors, the wing tip surface 
is a small fraction of the total rotor 
area and the distance between wing 
tip and adjacent rotor shaft is large 
so that the high shear stress region 
is confi ned to the zone between the 
chamber wall and rotor fl ight rather 
than also occurring in the region 
between rotors. The shear mixing 
occurs throughout the volume of the 
chamber, as with the Banbury mixer. 
The WP GKN series has capacities 
ranging from 2.2 lb for a laboratory 
machine to 1010 lb for the largest 
production unit, the GK650N. 
The rotor speed ranges from 13 - 
100 rpm on production units with 
power intensities of 1.5 - 7.5 hp/lb. 
For machines with comparable 
capacity, the WP machine operates 
at a lower speed but the same power 
intensity compared to the Banbury 
in the low speed mode, but in high 
speed mixing the WP machine 
operates at 30% higher rotation rate 
and 20 - 30% higher power intensity 
than the comparable Banbury.

In this section the main features 
of the commercial machines have 
been described. The selection of 
machine capacity and supplier 
depends upon many variables such as 
capital costs versus operating costs, 
product specification, production 
rate, run length, downstream 
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process requirements and 
other variables. Thus the 
selection of a new machine 
depends strongly upon the 
total process, not just the 
mixer alone. Because machines 
are so ruggedly constructed, 
equipment lifetimes of 30 years 
or more are common and new 
machine selection is a relatively 
rare problem for the process 
engineer. The more likely task 
is how to scale-up a process 
on existing equipment. The 
choice of modes of scale-up are 
fi xed to a great extent by the 
machinery available so that the 
scale-up rules followed by the 
machine manufacturers will be 
examined in the next section.

5.7 Scaling Laws  and 
Dump Criteria for 
Internal Mixers

As was the case for rubber 
mills, expressions for scaling 
according to various criteria 
can be developed and the 
effect of choice of scaling 
on dump criteria can be 
established. Commercial 
internal mixers are available 
only in a limited number 
of geometries so that the 
constraints imposed on scale-
up by the machine selection 
will also be examined.

The choice of scaling law for 
transferring a mixing process 
from one machine to another, 
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Figure 5.12 Rotor shapes for internal mixers
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such as a laboratory mixer to a production unit, refl ects a belief in what is the most 
important physical process controlling the rate of mixing. Accordingly, a number of 
alternative scaling rules can be used either alone or in combination. These are:

1.  Simple geometric similarity,

2.  Constant maximum shear stress,

3.  Constant total shear strain,

4.  Constant work input,

5.  Constant mixing time,

6.  Constant mass temperature,

7.  Constant Weissenberg and Deborah numbers, and

8.  Constant Graetz and Griffi ths numbers.

5.7.1 Geometric Similarity

Scaling by geometric similarity assumes that the important fl uid mechanical and heat 
transfer processes in mixing all scale linearly with length. Heat transfer is proportional 
to the area for heat transfer which varies as the square of length while heat generation is 
proportional to the volume of material which varies as the cube of the length. Therefore 
simple geometric scaling alone is insuffi cient for scale-up if the operating variables are 
maintained constant.

However, the actual geometric scaling used between two machines can be combined 
with another scaling criterion to establish the proper change in operating conditions 
needed to maintain similar mixing in the two processes.

Palmgren [14, 21] has published the rotor dimensions of several types of internal mixers. 
The data are summarised in Tables 5.6-5.8. If simple geometric scaling has been used 
by the manufacturers, then the rotor length-to-diameter ratio will remain constant for 
all machine sizes. Furthermore, the linear dimensions will scale as the cube root of the 
machine volume, so that selecting one machine as the reference:

 

g
gr

=
L
Lr

=
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Dr
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V
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�

1/3

 (5.64)

The actual geometric scaling used depends upon the manufacturer. Banbury mixers scale 
the rotor tip clearance and rotor diameter approximately according to simple geometric 
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scaling although the L/D varies signifi cantly. The diameter is consistently 10% larger 
than expected from simple scaling. The Shaw Intermix follows linear scaling very closely 
but the rotor tip clearance is less consistent with linear scaling. The Werner-Pfl eiderer 
mixers maintain linear scaling of both the rotor geometry and the rotor tip clearance. 
Except for the L/D of Banbury mixers, all manufacturers scale the mixer geometry by 
simple linear scaling within rather narrow limits. This will be an important result when 
considering other scaling and dump criteria.

5.7.2 Maximum Shear Stress

The expression for the maximum shear rate can be obtained from Equation (5.15):

  

��max =
�D + N

g
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h
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 (5.65)

In the case of a Newtonian fl uid the viscosity is independent of shear rate so that the 
shear stress is proportional to shear rate, but for rubbers, which can be approximately 
described as power-law fl uids:

Table 5.8 Geometry and scale-up of WP internal mixers
Mixer GK90N 160N 260N 330N

Power intensity (kW/kg) 2.6-10.5 3.0-12.2 3.0-11.9 2.9-11.6
1Rotor length (m) 0.55 0.70 0.80 0.90

Diameter (m) 0.43 0.52 0.60 0.68

Tip clearance (m) 0.004 - 0.005 0.007

L/D 1.3 1.3 1.3 1.3

Tip speed (m/s) 0.6-2.4 0.6-2.7 0.6-2.6 0.5-2.1

Geometric scaling (D/D90)/(V/V90)1 3 1 1.0 1.0 1.0

(g/g90)/(V/V90)1 3 1 - 0.9 1.1

(L/L90)/(V/V90)1 3 1 1.1 1.0 1.1

Shear stress scaling •�max 150-600 - 120-520 70-300

 
��max/ �� max90 1-1 0.8-0.9 0.5-0.5

*�max (MPa) 4.5-6.8 - 4.2-6.5 2.6-5.5

*�max/�max902 1-1 0.9-1 0.6-0.8
1The data on rotor geometry was originally presented by Palmgren [12, 18]; 
* �max = 105 

 
��max

0.3
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�max = k��max

n

 (5.66)

where n =1.0 for Newtonian fl uids but more typically n = 0.2 - 0.4 for fi lled rubbers.

For a complete analysis, the pressure fl ow term should be included in the equation but 
data on the channel diameter Dc and channel gap h are not generally available. As an 
estimate for Banbury rotors, and using the dimensions for a 3D machine:

 Dc ~ 0.75 Dt

 h ~ 0.25 Dt

 

3
Dch
Dt

�

�
�

�

�
	� g

eh3

�g2Dc

+ g
= 0.5

 (5.67)

Thus the pressure term increases the maximum shear rate by approximately 50% 
compared to the term for drag fl ow alone. Because the mixers for anyone manufacturer 
are nearly geometrically similar, the pressure fl ow contribution will be nearly a constant 
factor. Because we are only interested in ratios of maximum shear rates or shear stresses 
between machines for the scale-up problem, the maximum shear rate can be calculated 
using the drag fl ow term only:

   
�� =

�DtN
g

 (5.68)

This is the expression used to calculate the maximum shear rates reported in Tables 
5.6-5.8. The pressure fl ow term must be included in the analysis of a single mixer, as 
developed in Section 5.2 and Section 5.3. The maximum shear stress can be calculated 
from the maximum shear rate using Equation (5.66). As a typical set of constants for 
illustrating scale-up, the expression:

  
�max = 1�105

��max
0.3

 (5.69)

was used to calculate the values in Tables 5.6-5.8.

The ratio of maximum shear rates equals the ratio of maximum shear stresses for scale-
up of a Newtonian fl uid. It can be seen that the maximum shear rate (or shear stress if 
Newtonian fl uid) varies widely from one machine to another. High pressure-high speed 
operation increases the shear rate by as much as a factor of four for anyone machine, but 
for the same mode of operation, the maximum shear rate is smaller for larger machines 
with the exception of the Shaw Intermix K10. If the maximum shear stress is calculated 
according to Equation (5.69), the variation in maximum shear stress is much smaller. 
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The maximum stress does not depend upon machine size although it is approximately 
50% larger in the high speed mode.

For a pair of machines with fi xed geometries, the maximum shear stress could be 
maintained constant if:
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 (5.70)

 

N2

N1

=
g2

g1

Dt1

Dt2
 (5.71)

which means that the rotor speeds for the two machines should be the same, if they were 
strictly geometrically similar. If commercial machines had adjustable rotor speeds, the 
scale-up relation in Equation (5.71) could be used to maintain a constant shear stress. 
However, diffi culties in mechanical construction restrict the choice of rotor speeds 
and the maximum shear stress is not constant when a process is transferred from one 
machine to another.

For many mixing problems, the change in maximum shear stress would not be a serious 
diffi culty if the temperature history of the rubber was the same so at any point in the cycle 
the viscosity would be the same in the two mixers. Because the viscosity is temperature 
dependent, the expression in Equation (5.66) becomes:

   
�max = A exp 	b T 	 To( )( ) ��max

n

 (5.72)

In scale-up, the temperature history in two mixers may be signifi cantly different, as will 
be discussed in Section 5.8, so that the maximum shear stress may be signifi cantly lower 
than expected from the data in Tables 5.6-5.8 in a larger machine if it is operating at 
10-20 °C higher temperature.

As long as the shear stress is above the critical stress required for particle dispersion, 
the value does not matter and a constant total shear strain criterion should be used. 
However, if because of geometry or temperature effects the maximum stress falls below 
the critical stress, then particles will not be dispersed. Both cases can be observed when 
transferring a process from the laboratory to the plant. In most cases where particle 
break-up is incomplete, the large scale machine has fi xed geometry and rotor speeds. 
The only way that the maximum shear stress can be increased for the same rubber recipe 
is to lower the mixing temperature.
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5.7.3 Total Shear Strain

Transferring the mixing from one machine to another while maintaining a constant total 
shear strain sets the mixing time once the mixer geometry and rotor speed are known. 
Because of the pressure fl ow term, the total shear generated per rotor revolution contains 
implicitly the rate of rotation and the material properties as shown in Equations (5.9)-
(5.11). Even for the ideal rotor geometry considered in that model, explicit expressions 
for the total strain become unwieldy. In the conditions of real mixers, only numerical 
solutions are possible. However, for a series of similar mixers approximations such 
as described in the previous section can be used. If the pressure fl ow term makes a 
proportional contribution to the shear rate such that:

   
�� = ��d + ��p = 1+ a( ) ��d

 (5.73)

for fl ow between the rotor tip and the chamber wall as well as between the rotor shafts 
and the rotor shaft and chamber walls, then the approximations leading to Equation 
(5.35) can be used:
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��t + 1 =
e

�Dc

�

�
�

�

�
	 ��c

 (5. 35b)

and
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 (5.34)

so that:
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and the total shear strain is proportional to the shear rate at the rotor tip.

   
� = ��tm = b��ttm

 (5.74)

where: 

 tm = mixing time

For a series of geometrically similar machines, the parameter b will be a constant and 
the ratio of total shear strains will be proportional to the ratio of shear strains generated 
at the tip.
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If only drag fl ow is considered:

   
��t =

�DtN
g

= ��max

 (5.75)

and the ratio of mixing times is given by:

   

tm2

tm2

=
��max1

��max2
 (5.76)

These ratios have been tabulated in Tables 5.6 - 5.8. It can be seen that for a given mixer, 
high pressure-high speed mode of operation increases the shear rate by 3-5 times so 
that the mixing time can be reduced by a similar amount compared to the low pressure 
process. This agrees well with the observations reported in Section 5.5.

Van Buskirk and co-workers [2] implicitly used these assumptions in calculating the 
total shear strain as:

  
� =

2.15
Vb

eDtLNt

 (5.77)

Approximating the batch volume by:

 Vb = �Dcgh 

it can readily be seen that this equals the total shear calculated by:

   
� =

e
�Dc

��ttm

 (5.78)

which is the shear strain generated by the rotor tip. The relative weight of the shear 
strain generated in the channel versus the strain generated at the tip can be calculated 
from Equation (5.35):
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 (5.79)

For the Banbury 11D, using the approximations:
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 Dc ~ 0.75 Dt

 h ~ 0.25 Dt

and the values of the dimensions listed in Table 5.6, the result is:

 

�c

�t

=
0.042
0.019

= 2.2

Thus the shear generated in the channel is twice as great as the shear generated in the 
tip. The total shear reported by van Buskirk [2] using Equations (5.77) or (5.78) is 
inexact and the expression used by them:

  
� = �k Nt

 (5.80)

where k´ is given for various Banbury mixers in Table 5.9 is incorrect. However, for a 
geometrically similar series of mixers the value of k´ reported in that paper will vary 
from the proper value by a constant factor so that scale-up using Equation (5.80) will 
be a satisfactory approximation:

  
�true = c�

 (5.81)

where � true is the true total shear strain, �  is the shear strain calculated using Equation 
(5.80) and c incorporates the correction from Equation (5.35b) to Equation (5.78) and 
the correction for pressure fl ow. Van Buskirk and co-workers [2] investigated the use of 
the work input per unit mass and the total shear strain as alternative parameters to be 
maintained constant. The unit work concept will be discussed in the next section. Using 

Table 5.9 Shear strain constants for Banbury mixers [2]
Mixer k´
B 0.425

1A 0.427

3D 0.361

9D 0.244

FB0 0.419

11 0.37

F270 0.333

F370 0.446

27 0.233

F620 0.465

Brabender Plastograph with Banbury rotors 0.580
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Equation (5.80), the mixing of SBR1712 with 50 phr N-339 carbon black was scaled 
from the Brabender to the Banbury B. The Brabender was operated at 50 rpm and 138 
°C while the Banbury B was operated at 77 rpm and up to 143 °C dump temperature. 
The scale-up volume ratio was 20 to 1 with the results for the Mooney viscosity shown 
in Figure 5.13. It can be seen that the Mooney viscosity correlates well with the total 
shear strain. The results for other properties in scale up will be discussed in the next 
section. Even though the rotor speed, mixing volume, maximum shear stress, mixing 
time and dump temperature varied widely from run to run, the Mooney viscosity was 
found to depend only on the total shear strain, or equivalently in this case, the unit 
work input.

5.7.4 Work Input

If the torque on the mixer motor is measured directly, then the work input per unit 

Figure 5.13 Total shear strain in scale-up
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volume can be calculated:

   

dW = dP / Vb

=
2�N 9.8�10�6( )

Vb

T(t)dt

W =
2�N 9.8�10�6( )

Vb

T(t)dt�
 (5.82)

where N is the rotor speed in rpm, T(t) is the measured torque in m-kg, t is the time 
minutes and Vb is the batch volume in m3 to give the work input W in MJ/m3. The 
recorder trace can be integrated graphically or the torque transducer output can be 
integrated electronically for experimentally-measured torque-time curves.

The measured torque is related to the shear stress at the rotor wall by Equation 
(5.16):

  
T = s � t,y=0
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 (5.16)

The shear rate in the channel is related to that at the tip by Equation (5.35):
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for many mixers. If the material is Newtonian, then:
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if the material behaves as a power-law fl uid, the expression becomes:
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The ratio of shear rates depends only upon the geometry so that the work input can 
be calculated:
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Substituting Equations (5.68) and (5.78) yields:
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 (5.87)

 W = b�

and 

 log W = log y + b  (5.88)

where b is the time-average of the integrand in Equation (5.87). This is the same as the 
equation derived empirically by van Buskirk [2] from experimental torque measurements 
and shear strain calculated using Equation (5.80). The integral in Equation (5.87) 
depends upon the geometry of the mixer, the rotor speed and the temperature-history 
of the material through the temperature dependence of viscosity.

In practice, the approximations leading to Equation (5.78) for the calculation of shear 
rate necessitate the introduction of another factor:

 log W = a log �  + log b (5.89)

where a is close to one for most systems.

If the temperature history of a material in two mixers is similar, then the difference 
between scaling at constant shear strain or scaling at constant work input may be diffi cult 
to discern. If the work input is calculated from direct rotor torque measurements, this 
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is a useful way to scale-up a mixing operation or to control a single mixer.

Van Buskirk and co-workers [2] measured the Mooney viscosity, die swell and bound 
rubber as a function of the work input calculated directly from torque measurements 
on a Brabender Plastograph with Banbury blades, a Banbury B mixer and a Banbury 
1A mixer. The work input for the factory scale mixers, the Banbury 11 and 27 and 
the Shaw Intermix K7 and K10 mixers, were calculated from continuously measured 
ampere-time records or periodically recorded instantaneous ampere readings for the 
motor power. Then the power consumption P can be calculated:

  
P = VIt � pf

where V is the line voltage, pf is the power factor (0.90) and It  is the area the current-time 
curve. Typical results are shown in Figure 5.14 and Table 5.10. Despite a thousand-fold 
increase in mixer volume, the viscosity-work input correlation was smooth for a series 

Figure 5.14 Scale-up of mixing
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of geometrically similar mixers.

Several measurements were also made for the Mooney viscosity versus work input for the 
Shaw Intermix K7 and K10 machines. The measured viscosity and work input are given 
in Table 5.11. This illustrates the drawback of considering the work-input for scale-up 
between machines which are signifi cantly different in geometry. Apparently the Mooney 
viscosity is signifi cantly lower for the same work input on the Intermix machines than 
observed on the Banbury mixers. This would mean that scale-up using constant work-
input as the scaling criterion does not work for machines having a different design.

The mixing on the Intermix machine can be compared to mixing on the Banbury 
machine if the total shear strain is used for scaling. Using the geometry of the rotors 
given in Tables 5.6 and 5.7 and the rotor speed in Table 5.11, the maximum strain rate 
may be calculated:

  
��max =

�DtN
g

and the total shear strain may be calculated:

 �  = 
 
�� max tm

If the results from the Banbury 27 mixer are used as the reference, a corrected work 
input may be calculated for the Intermix machines:

  
Wcorr =

�
�27

W27

 (5.90)

Table 5.10 Scale-up of mixing [2]
Mixer Brabender Model PL-750 Banbury

B 1A 11 27
Mixer volume (dm3) 0.074 1.69 19.5 247 68

Loading volume (%) 67.5

Mixing time (min) 2.0 3.0 5.1 12.0 25.0 2.5 4.0 5.0 6.8

Rotor speed (rpm) 50 50 50 50 50 77 60 40 25

Dump temperature 138 138 138 138 138 141 136 143 146

Work input (MJ/m) 360 720 1140 2300 4480 553 1085 390 313

Mooney viscosity 102 92 73 60 55 97 77 107 112

Undispersed carbon 
black (%)

>20 11-20 3-7 2-1 <1 11-20 3-7 >20 >20

Recipe: SBR8202 - 75; BR - 25; Oil - 50; N-339 - 75
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which is obtained from Equation (5.88). This corrects for the difference in geometry 
between mixers. Using the calculated values of total shear strain, the corrected work 
inputs were calculated and the expected ML-4 values were obtained from the master 
curve shown in Figure 5.10.

The result may be explained with Equation (5.88). If the rubber properties depend upon 
the total shear strain in mixing, then two mixers should be compared at constant shear 
strain. For geometrically similar machines:

  

W1

W2

=
b1�1
b2 �2

=
�1
�2

 (5.91)

so a comparison at constant work input is equivalent to a comparison at constant shear 
strain. However, if the machines are not geometrically similar, Equation (5.91) does not 
hold and the constant shear strain criterion is not the same as the constant work input 
criterion. The corrected work input listed in Table 5.11 is the work which would be 
required in a Banbury mixer to give the same total shear strain observed in the Intermix 
machine. This is equivalent to comparing the mixes at constant shear strain, and as 
shown in the table, the results are consistent with this criterion which scaling does not 
follow the constant work input criterion.

5.7.5 Constant Mixing Time

If two mixers are geometrically similar and run at the same operating speed, then 
scale-up by holding the mixing time constant or production by controlling the cycle 
time is the same as scale-up or control with a constant shear strain criterion which 
already has been discussed. If the mixers are not geometrically similar, the shear rates 

Table 5.11 Intermachine comparison [2]
Mixer Shaw K7 Shaw K10 Banbury 27
Capacity (dm3) 298 851 618

Rotor speed (rpm) 50-60 38 25

Mixing time (min) 1.7 2.5 3.8

Wu (MJ/m3 measured) 395 332 305

Dump temperature (°C) 150 150 155

ML-4 94 98 103

� 39,000 26,000 22,000

Wu corrected 550 360 305

ML-4 from mastercurve 94 99 103
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may be considerably different, even at the same rotor speed so that the mixing time is 
not a reliable measure for scale-up. If the rotor speeds in two dissimilar mixers are in 
proportion, so that shear rate is the same in both machines, then the constant mixing 
time criterion is the same as the constant total shear criterion.

One possible diffi culty in using the cycle time as the control variable in a mixing operation 
is that the effective mixing time may be less than the total mixing time, particularly in 
low pressure mixers. In this operation, the rubber is not immediately drawn into the 
rotors because of slip at the wall, as discussed in Section 5.5. If this occurs, very little 
shear will be generated until fl ow commences. The length of the induction period will 
depend upon stock temperature, mixer temperature, rotor speed and other variables. 
Generally, the induction time will vary from batch to batch so that the effective mixing 
time will vary and the cycle time will not be a measure of the mixing time. In high 
pressure-high speed processes, this induction period is essentially eliminated so that 
cycle time does correspond to effective mixing time.

In the high pressure process, controlling at a constant cycle time corresponds to 
controlling at a constant mixing time, hence a constant shear strain when the rotor speed 
is constant for a single machine. Because of this simple correspondence, it was found that 
the Polymer-Physik Controller [22] which integrates the power to the motor to give the 
work input as a control variable did not improve the performance on a Banbury mixer 
compared to cycle time as the control variable. In the low pressure process where slip 
can be signifi cant, the controller may be expected to improve performance compared 
to the mixing time criterion.

If the geometry and rotor speeds are known for two mixers, so that the shear rates can 
be calculated, then the mixing time in scale-up can be calculated:

   

tm2

tm1

=
��1

��2  (5.92)

Unless the ratio of shear rates in the two machines is known, the simple criterion of 
constant mixing time may be inadequate.

5.7.6 Constant Stock Temperature

The energy balance for an internal mixer was discussed in Section 5.4. The net motor 
work is dissipated in the rubber from viscous losses to generate heat. Some of this energy 
is conducted away by the cooling water and some of the energy raises the temperature of 
the stock and the machine walls. The rate of energy dissipation is a function of the shear 
rate. If two mixes are prepared at the same total shear strain but at two different shear 
rates, the higher shear rate material will generate more heat. In additions the contact 
time with the cooling walls will be less so that less heat will be conducted away at the 
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higher shear rate. Consequently the average stock temperature will be higher in the high 
rate mix for the same external cooling conditions. Alternatively, the temperature of the 
stock can be lowered for the same shear rate and mixing time by using chilled water. 
Thus the stock temperature can be controlled, at least within limits, independently of 
the work input or total shear strain. As can be seen in Table 5.11, the stock temperature 
at dump bears no relationship to the mix properties.

As seen in Tables 5.6 and 5.7, the cooling area-to-mixer volume ratio decreases rapidly 
for larger mixers. Consequently the rate of heat transfer decreases relative to the rate 
of heat generation for the same shear rate and the stock temperature will be higher for 
larger machines. If there is a maximum stock temperature because of scorchiness with 
curing additives, then the larger machine must be operated at a lower shear rate, hence 
longer mixing time, than the smaller machine. The relation in scale-up can be derived 
from the model given in Section 5.2 and Section 5.4. The higher stock temperature for 
larger machines may also be a problem if the temperature-dependence of viscosity lowers 
the maximum shear stress below the critical value for particle dispersion.

5.7.7 Constant Weissenberg and Deborah Numbers

One major limitation to internal mixer operation is the appearance of fl ow instabilities 
similar to those discussed for roll mills in Chapter 4. Region 1 behaviour where slip 
occurs at the wall in drag fl ow can delay the start of effective mixing by preventing fl ow 
between the rotors and the rotors and the wall. This problem is overcome by using higher 
ram pressures as discussed earlier. Region 2 and region 4 are both stable fl ow regimes 
but region 2 gives better dispersion because of a larger elongational stress which is more 
effective in agglomerate dispersion than is a shear stress. Region 3 gives poor mixing 
because a signifi cant portion of the stock forms crumbs with a ‘cheesy’ consistency [23]. 
The material behaves as if melt fracture occurs and there is plug fl ow in the high stress 
region rather than shearing fl ow. Consequently the dispersion is signifi cantly lower.

Another type of instability is also possible. When a pressure transducer is placed in the 
chamber wall with a Newtonian material it is observed that pressure rises as the rotor 
tip passes the transducer, then quickly returns to the baseline pressure. With viscoelastic 
materials, the stress relaxes slowly so that the pressure decays slowly. If the rotor speed 
is too high, then the material will not relax between subsequent passes so that the shear 
stress will increased for the imposed shear rate. The material is effectively pre-stressed 
before passing through the nip. If the pre-stress is great enough, then the shear stress at 
the wall will exceed the critical stress for slip and the rubber will not pass through the 
gap between the rotor tip and the chamber wall. This behaviour looks like a region 1 
fl ow, but the onset of instability is controlled by a critical Deborah number rather than 
Weissenberg number.

Unfortunately, insuffi cient evidence is available to assign quantitative values to the critical 
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Weissenberg and Deborah numbers for fl ow instabilities. However, if a satisfactory 
mix is obtained on one machine, then fl ow in another mixer will be stable provided the 
Weissenberg number (We) and the Deborah number (De) are constant:

 We = �
 
��max = a%N  (5.93)

 De = %N  (5.94)

where % is the material relaxation time, a is a geometric factor and N is the rotor speed 
for a maximum strain rate 

 
��max. In most scale-up problems neither of these groups can 

necessarily be kept constant because of fi xed mixer geometry and rotor speeds. If the 
shear rate and rotor speed are no larger in scale-up than in the smaller machine, as is often 
the case, then the fl ow will remain stable. However, in some cases the factory machine 
operates at higher rotor speeds than the laboratory mixer. Now both the Deborah and 
Weissenberg numbers will be larger and fl ow instabilities may occur. If this happens, 
then the process must be operated at higher temperature (lower %) or slower rotor speed, 
hence longer mixing time.

5.7.8 Graetz and Griffi ths Numbers

The energy balance for an internal mixer can be written (see Section 4.4) as:
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�t
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�X
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�
�
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�2�
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�
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�
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e��

 (5.95)

where: 

 Gz = Graetz number

     
=

Ug2�cp

�kDt
 

 Gr = Griffi ths number

    = �oU2/k b

 * = b(T ñ To)

 X = x/�Dt

 y = y/g

 � = Lt/U

 U = �DtN
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 �o = � exp (-b(T–To) = viscosity

 k = thermal conductivity

 y = direction normal to chamber wall

 X = direction to chamber wall,

The solution to Equation (5.95) would give the temperature distribution throughout 
the mixing chamber if it was calculated. If two mixers are to give the same temperature 
history for a material, then the Graetz and Griffi ths numbers must be kept constant as 
well as keeping the cooling water temperature and fl owrate constant. This is equivalent to 
keeping the cross-channel Graetz and Griffi ths numbers constant in extruder scale-up.

The Graetz number means:

 

U1�1cp1g1
2

�k1Dt1

=
U2�2cp2g2

2

�k2Dt2

Using the rotor speed as the appropriate scaling velocity, and for the same material, the 
constant Graetz number criterion becomes:

  
N1g1

2 = N2g2
2

 (5.96 )

Using the Griffi ths number criterion:

 
N1

2Dt1
2 = N2

2Dt2
2

 (5.97)

or

 N1/N2 = Dt2/Dt1 (5.98)

If both the Graetz and Griffi ths numbers are to be kept constant, then the geometry of 
the mixer should scale as:

  
Dt2 / Dt1 = g2

2 / g1
2

 (5.99)

Because all commercial mixers are nearly linear in geometric scaling, the constant Graetz-
Griffi ths number criteria cannot be met. In most cases, the Graetz and Griffi th number 
increase for larger machines, hence relative heat transfer to the wall decreases and the 
machine tends to run at higher temperatures, as discussed previously.

A number of possible modes of scale-up have been discussed.

Because only a limited range of commercial mixers are available to the rubber processor, 
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many of the scale-up criteria such as constant Weissenberg or Deborah number, or 
constant Graetz and Griffi ths numbers, cannot be met. Commercial machines nearly 
follow linear geometric scaling, but because of the choice of rotor speeds, transfer of 
a process from one machine to another may or may not be at constant shear stress. As 
long as the maximum stress is above the critical stress for particle dispersion, a constant 
total shear strain criterion should be used in scale-up by adjusting the mixing time to 
compensate for a difference in shear rate between mixers. In some cases, the work input 
or mixing time criteria are equivalent to the constant shear strain requirement and may 
be substituted. However, caution must be used because they are not always equivalent 
and shear strain is the proper parameter to use.

5.8 Summary

In this chapter a model based upon the combined drag and pressure fl ow between the rotor 
tip and chamber wall has been developed to describe the operation of an internal mixer. 
The mixing cycle can be divided into particle incorporation, dispersion and mastication. 
The die swell reaches maximum and the Mooney viscosity approaches a plateau when the 
dispersion phase is complete. This point on the mixing cycle is a good dump criterion and 
corresponds to a constant shear strain in scale-up for a given rubber recipe. The capacities 
and operating characteristics of commercial mixers have been examined. Because of limited 
choices of geometry and rotor speeds, generally it is not possible to meet all the scale-up 
criteria. The major instabilities in fl ow occur because of region 3-type behaviour where the 
material does not undergo shear between the rotor and wall or a region 1-type behaviour 
where the material does not enter the gap at all.
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AuthorAuthor 6
Many mixing lines use an extruder to form strand, sheet, slab or pellets from the 
dumped stock of an internal mixer. Although some laminar shear mixing does occur 
in these extruders, they are primarily designed to alter the shape of the materials for 
subsequent use and the mixing which occurs is secondary. The design and operation of 
these machines is beyond the scope of this text.

In a number of product lines, mixing is achieved in two steps. Carbon black and other 
inert ingredients are added in the fi rst stage internal mixer which incorporates the 
fi ller and partially disperses the particles. The incompletely mixed material is dumped 
from the mixer onto a mill or extruder to shape the stock, which is then allowed to 
cool. Vulcanising agents are added to the stock in a second mixer which completes the 
particle dispersion while the temperature-history of the active ingredients is held to a 
lower heat level to prevent scorching. In many cases internal mixers are used for both 
mixing steps. However, it is often possible to replace one or both internal mixers by a 
continuous mixer.

6.1 Mixing in Single Screw Extruders

Among the earliest analyses of fl ow in conventional single screw extruders is that 
developed by Carley, McKelvey and co-workers [1-3]. Mohr, Saxton and Jepson [4, 5] 
then adapted that analysis to describe mixing. Their analysis is presented here.

The starting point for the simplifi ed fl ow analysis is to treat the fl ow in the screw channel 
as combined pressure and drag fl ow in a rectangular channel with no-slip conditions 
at the wall. The coordinate system is shown in Figure 6.1. Further assumptions are 
that the fl ow is Newtonian, incompressible and isothermal; the channel width is large 
compared to the depth so the effect of channel sides can be neglected; no leakage fl ow 
occurs across the screw fl ight. The effect of these assumptions on the analysis will be 
considered next:
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6.1.1 Mathematical Formulation

The three components of the Navier-Stokes equations become:

 

1
�

�P
�z

=
�2vz

�x2
+
�2vz

�y2

 (6.la)

 

1
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�P
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�P
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�x2
+
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�y2

 (6.lc)

Figure 6.1 Channel geometry and coordinates for a single-screw extruder
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and

 

�2vz

�x2
<<

�2vz

�y2

 (6.2)

because of the wide channel. The boundary conditions are:

 vz(O,y) = 0  (6.3a)

 vz{x,O) = 0  (6.3b)

 vz (w,y) = 0  (6.3c)

 vz (x,h) = V  (6.3d)

where Vz is the downstream component of the barrel velocity relative to the screw. Using 
Equation (6.2), Equation (6.la) becomes:

  

1
�

�P
�z

=
�2vz

�y2

 (6. 4a)

 vz(O) = 0 (6. 4b)

 vz(x,h) = Vz (6.4c)

The solution to this equation is:

  
vz =

Vzy
h

�
y h� y( )

2�
�P
�z

 (6.5)

The volumetric throughput is calculated by:

  
Q = w vz y( )dy

0

h

�
 (6.6)

Substituting from Equation (6.5) yields:

  
Q =

Vzwh
2

�
wh2 �P / �z( )

12�
 (6.7)

The drag velocity component of the barrel with respect to the screw in the cross-channel 
direction Vx causes circulation in the channel which improves mixing. Equations (6.1b-c) 
and (6.2) combine to become:

 

1
�

�P
�x

=
�2vx

�y2

 (6.8)
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with boundary conditions:

 vx(0) = 0 (6.9a)

 vx(h) = Vx (6.9b)

with a solution:

  
vx =

�yVx

h
�

y h� y( )
2�

�P
�x

 (6.10)

By assuming no leakage fl ow over the fl ight tips, the net fl ow in the cross-channel 
becomes:

  
vx y( )dy = 0

0

h

�
 (6.11)

Substituting Equation (6.10) and solving:

  

�P
�x

=
6�Vx

h
 (6.12)

and
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yVx

h
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h

�

�
�
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�

 (6.13)

The relative barrel velocities are given by:

 Vz = �DNcos* (6.l4a)

 Vx = �DNsin*  (6.14b)

where D is the barrel diameter, N is the screw speed and * is the screw pitch. The 
combined circulation fl ow cross-channel and drag fl ow down channel means that 
each fl uid element of the fl uid follows a helical trajectory. Following the analysis of 
Mohr, Saxton and Jepson [4], the amount of shear received by a fl uid element can be 
calculated. The shear in the cross-channel direction can be approximated by allowing 
an element to cross the entire width at one height h1 and then to return immediately at 
its complementary height h2 (Figure 6.2) given by:

  
vxdH = �

0

H1

� vxdH
H2

1

�
 (6.15)

where the distance normal to the barrel surface has been made non-dimensional:
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 H = y/h

Substituting from Equation (6.13) and integrating yields:

 H1
2 	 H1

3 = H2
2 	 H2

3

 (6.16)

The average velocity of an element is given by the ratio of the distance traversed in one 
cycle to the time for one cycle:

  

vx =
2w

w
vx1

+
w

vx2

=
2vx1vx2

vx1 + vx2
 (6.17)

where vx obtained from Equation (6.13).

The average shear rate can then be calculated:
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h vx2 + vx1( )
 (6.18)

Figure 6.2 Simplifi ed cross-channel fl ow for shear calculations (from Mohr, Saxton and 
Jepson [4])
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The average residence time in the channel for an element at H1 in a screw with length 
L is:

  
t =

L

vz1 sin�
 (6.19)

where vz1 is given below in Equation (6.25), and the total cross-channel shear is given 
by:

  
�cc =

1
h

dvx

dH1

L

vz1 sin�
 (6.20)

Substituting:
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h2

6vz�

dP
dz

 (6.21)

into Equation (6.5) and using:
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 (6.22)

Equation (6.20) becomes:
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where: 
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��a = 0

 (6.24)

and Fc depends only on H1 as tabulated in Table 6.1. As a, the ratio of pressure to drag 
fl ow, increases, the cross-channel shear In a similar manner, the average downstream 
velocity of a fl uid element initially at height H1 can be calculated:
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where vz and vx correspond to heights H1 and H2. The average  downstream shear rate 
can be calculated by differentiating with respect to H1 and substituting for the residence 
time yields the total shear downstream:
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where FD is a dimensionless function of H1 (Table 6.1) given by:
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The shear components calculated in Equations (6.20) and (6.26) can be resolved into 
components parallel and perpendicular to the screw axis:
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for the component parallel to the axis and:
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The average shear is then:

  
� = �cc

2 + �DC
2( )1/2

 (6.29)

Thus for a screw with a given geometry, which fi xes L,  h and * the total shear depends 
upon the initial position of a fl uid element H1 (through FC and FD) and upon the ratio 
of pressure to drag fl ow a. 

Further shear occurs in the die and in the transition from fl ow in the channel to fl ow 
in the die. This additional shear and the relation between position in the extrudate and 
position in the channel of a fl uid element depends upon the die geometry [4-5]. If the 
minor component is considered to be a cubic element with initial length l and volume 
fraction �,the striation thickness can be calculated from the total shear: 

   
r = � / ��

 (6.30) 

(see Chapter 3). Mohr, Saxton and Jepson calculated the distribution of shear strain in 
the screw channel and the dependence of striation thickness on position in the channel 
and pressure-to-drag fl ow ratio (Figures 6.3-6.5). From these fi gures it can be seen that 
the conventional single screw extruder is a poor mixer as a consequence of the large 
variation in total shear with position in the screw channel. 

There have been several drastic assumptions in this analysis, primarily neglecting the 
effect of shear rate and non-isothermal effects on viscosity and the effect of leakage fl ow 
past the fl ight gap between the screw and the barrel. Rubber extrusion is essentially the 

Table 6.1 Shear factors
H1 = y/h FD FC

0.050 17.527 -21.678

0.100 7.880 -8.527

0.150 4.796 -4.171

0.200 3.309 -1.983

0.250 2.441 -0.648

0.300 1.870 0.264

0.350 1.461 0.936

0.400 1.149 1.458

0.500 0.675 2.225

0.600 0.278 2.754

0.700 -0.446 3.155
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same process as melt extrusion of thermoplastics so the effects of these assymptions 
on the analysis is the same. McKelvey [3], Tadmor and Klein [5] and Pearson [6] have 
discussed the importance of these effects in detail. Even with the more detailed analysis 
the conclusion that mixing is poor in a conventional single-screw extruder remains 
unchanged. 

6.1.2 Non-Standard Geometry

The poor mixing in the single-screw extruder is a consequence of the fact that a fl uid 
element at an initial height in the channel H1 remains at that height (and its complement 
H2) throughout the extruder. If each element could spend a proportion of its residence 
time at each height, then mixing would be much more uniform. By altering the screw 
channel and the fl ight geometry this mixing can be accomplished by increasing the 
backmixing.

Figure 6.3 Calculated shear distribution (from Mohr, Saxton and Jepson [4])
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One of the simplest screw alterations is that used by Werner and Pfl eiderer in their EVK 
single-screw mixing extruder [8]. Following a conventional feed zone, the mixing zone 
has interrupted channels which provide high shear regions and interrupted screw fl ights 
which increase backmixing, as shown in Figure 6.6. The division and reforming of 
fl owlines at the interruptions in the wall of the screw channel provides good backmixing 
which increases the residence time, increasing the total shear, and reduces the variation 
of total shear with initial position in the channel. Typically several of these mixing 
zones are present in a screw having a total length-to-diameter ratio of 10-14. Generally 
these machines are used for the second stage in a two-stage mixing process where the 
fi rst stage is an internal mixer. Data for commercially available EVK machines are 
given in Table 6.2. Unfortunately data is not yet generally available for evaluating the 
performance of these machines.

Figure 6.4 Striation thickness distribution (from Mohr, Saxton and Jepson [4])
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Figure 6.5 Effect of helix angle and pressure fl ow on mixing (from Mohr, Saxton and 
Jepson [4])

Figure 6.6 The Werner-Pfl eiderer EVK screw
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Menges and Lehnen [9] examined mixing in a single-screw extruder having a conventional 
screw for six turns followed by 4-6 turns of the screw with interrupted channel walls. 
These effectively split and recombined the fl ow stream to get good mixing as shown in 
Figure 6.7. This screw was found to give good mixing with a uniform extrudate.

Dulmage [10] suggested using fl uted mixing sections to increase backmixing without 
using baffl es. The fl uted section may have channels either parallel to the screw axis or 
at a helix angle [11, 12]. Tadmor and Klein analysed the fl ow in this geometry in detai1 
[12]. The performance of the extruder depends strongly upon the geometry of the fl uted 
section but it can potentially greatly increase the homogeneity of the extrudate. A variety 
of mixing screws have pins or other shapes on the end of the shaft [13,14]. As with the 
fl uted sections, all of these are designed to increase backmixing, but now in the region 
between the end of the screw channel and the die.

The zones of fl ow separation and recombination improve extrudate quality by two 
methods. First, backmixing and the randomisation of fl ow paths works to eliminate 
the shear gradients shown in Figure 6.3. Secondly, the residence time distribution of the 
fl uid elements is broadened so that temporal variations are decreased.

Several manufacturers have drastically altered the basic screw and barrel geometry 
by inserting grooves in the barrel, using wavy screws, reciprocating the screw, using 
interrupted fl ights and intermeshing teeth [15-22]. Of these various types, only two have 
achieved commercial importance. The Buss Ko-Kneader has become widely used in the 
plastics industry, primarily for PVC which behaves as an elastomer in processing, but 
has not been used much in the rubber industry. The Transfermix machine, developed 

Table 6.2 Werner-Pfl eiderer EVK single-screw mixing extruders
Size 
(screw diameter, mm)

Maximum Drive 
Capacity (kW)

Maximum Speed 
(rpm)

Output* 
(kg/hr)

90 90 110 200-500

120 135 85 400-900

150 190 70 600-1400

200 260 52 1000-2300

250 380 42 1600-3500

300 550 35 2300-5000

400 620 20 4000

500 950 16 6500

650 1500 14 11000

L/D = 10-14
*Output depends upon whether hot or cold feed, fi ller, stock viscosity, etc.
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Figure 6.7 Screw with stream dividers

by Uniroyal, has achieved success in the rubber industry [18, 20, 23]. Material in the 
screw grooves are transferred to grooves in the barrel with an opposite handed channel 
(Figure 6.8). The depth of the grooves varies systematically so that the groove disappears 
on the screw (or barrel) where the groove is deepest on the barrel (or screw). Mixing 
comparable to that in an internal mixer can be achieved in extruders ranging from 3.25 
inch to 21 inch diameter and outputs of 600 to 35,000 lb/h. The recommended use is 
as the second stage in a two-stage mixing line but no data are generally available for 
evaluating the mixer performance.

6.2 Mixing in Two-Screw Extruders

Only one commercial continuous mixer based upon the rotor design used in internal 
mixers is currently available. The Farrel Continuous Mixer has two rotors with mixing 
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zones shaped the same as with Banbury mixers [24-26]. This is preceeded by severa1 
turns of a conventional screw which conveys the rubber into the mixing zone. In a 
properly operating mixer, the screws are operated in a starved condition so that mixing 
does not begin until the mixing zone. The fl ow in the mixing zone is essentially that 
described in Chapter 5. The fl ow rate is controlled by the rate of feed and the fi lling in 
the mixing zone is controlled by the discharge chute opening and the mixer temperature. 
The capacities of these machines are given in Table 6.3.

Because of continuous fl ow in these mixers, there will be a distribution of residence 
times so that dispersion and shear would be expected to be less homogeneous than with 
an internal mixer with the same effective residence time. With the rapid cycle possible 
with high ram pressure internal mixers, the throughput in the batch machines can match 
that for FCM mixers. Consequently these mixers appear not to offer any advantages 
over batch mixers.

Figure 6.8 Geometry of the Tranfermix

Table 6.3 FCM continuous mixer capacities
Machine 2FCM 4FCM 6FCM 9FCM 12FCM 15FCM
Mixing chamber volume 91) 0.344 2.70 9.13 30.8 73.1 124.4

Maximum torque (kg-m) 18.7 143.2 716.2 2864 5729 8952

Rotor speed (rpm) 1150 100 350 300 250 280

Motor power (kW) (hp) 22
30

73.5
100

257
350

882
1200

1470
2000

2580
3500

Production rate for typical rubber 
(kg/h)

120 450 1600 5000 9000 15800
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A conventional twin-screw extruder could also be used and the fl ow model for a non-
intermeshing twin-screw extruder has been developed by Kaplan and Tadmor [27]. The 
behaviour in this case is very similar to that of a single screw extruder with a small amount 
of additional mixing due to the transfer of rubber from one screw to the other. Like the 
single screw extruder, these are relatively poor mixers. Most twin-screw extruders have 
been developed for thermoplastics and are not really suitable for rubber mixing.

6.3 Summary

Continuous mixers or extruders used as mixers have made relatively little impact on the 
rubber industry. The required geometry of the feed material means that they can only 
replace the second of a two-stage process for bale rubber. Usually particle incorporation 
and backmixing are poor in a continuous mixer so that an internal mixer is more effi cient 
in the fi rst stage even for pelletised synthetic rubbers. High pressure internal mixers with 
automated feed and discharge are very effi cient machines with high throughputs which 
equal that feasible with continuous mixers. Because of this strong competition, only 
two continuous machines have made any impact on the industry. The Transfermix is 
a single-screw machine and the FCM Mixer is a twin-rotor machine. The Transfermix 
gives good mixing and could be considered for high volume production lines. The FCM 
machine as it is now marketed appears inferior to the comparable batch internal mixer. 
However, if powdered rubbers are developed in signifi cant quantities (see Chapter 7), 
this outlook may change.
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Powdered rubbers have periodically generated great interest in the past ten years, 
primarily based on the efforts with BF Goodrich in the USA and its European affi liates. 
The possible advantages of powdered rubbers will be presented in this chapter.

7.1 Preparation

To date the only commercially available powdered rubber is an acrylonitrile-butadiene 
rubber (NBR) manufactured by BF Goodrich. Powdered rubbers have a particle size 
less than 1 mm diameter which distinguishes them from conventional pellets or granules 
for use in the common extrusion line. Because of their small unit size, powders have 
a relatively large surface-to-volume ratio. Three methods have been described for the 
preparation of powders from emulsion rubbers, although the same processes could be 
used for natural rubber latex [1].

7.1.1 Mechanical Pulverisation (Grinding)

Conventional shredders produce too large a particle (2-20 mm) so high impact pulverisers 
are used. Large amounts of air are needed to remove the frictional heat. As an alternative, 
the rubber may be cooled below its glass transition temperature with liquid nitrogen 
and then pulverised. The main disadvantage of this method is the energy costs.

7.1.2 Spray Drying

The emulsion is forced through a nozzle countercurrent to a stream of hot air which 
dries the particles before they coalesce. The main disadvantage of this process is that 
the emulsifi ers will be incorporated into the product and this may adversely affect 
vulcanisation rate and other compound properties.

 7
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7.1.3 Coagulation

By proper selection of electrolytes, a fi nely divided powder can be formed. This can be 
coagulated with large amounts of carbon black as a masterbatch or treated with small 
amounts of antimassing agents such as zinc oxide or zinc stearate. The wet powder is 
dried on a vacuum fi lter followed by a fl uidised bed.

Each of these methods require additional raw materials handling and energy expenditure 
which sets a price premium on the cost to the rubber processor. This has been one of the 
major obstacles to acceptance of powdered rubbers in the industry despite the offsetting 
advantages of this material.

7.2 Mixing Powdered Rubbers

Initially the fi llers and additives such as carbon black and the rubber are intimately 
mixed, as in blending (Chapter 2), before phase coalescence occurs and the rubber 
forms a continuous matrix. In this regime, simple mixing occurs rapidly with little shear 
mixing. When coalescence occurs, fi ller particles are already well distributed throughout 
the bulk of the material so the only energy required is that to reduce the carbon black 
agglomerate particle size and to move the particles small distances, on the length scale of 
the initial rubber particle size. Less shear is required for this process than is required for 
slab rubber, where large shears are required to distribute the material uniformly through 
the rubber. The stock temperature is signifi cantly lower in the powdered rubber so that the 
viscosity, hence the shear stress, is higher and particle breakup is more readily achieved. 
Another advantage of the lower temperature is that often vulcanising ingredients can be 
added with the carbon black in a one-stage process rather than two stages.

Wardle and Sercombe [2] pre-blended the powdered nitrile rubber, carbon black and 
vulcanising agents in a T.K. Felder Turbo Rapid Mixer such as is used in PVC technology 
[3] The dry ingredients were added at the beginning of the cycle and mixed 2 minutes 
at 800 rpm and 1 minute at 2000 rpm. Speed was reduced to 800 rpm for the addition 
of liquid ingredients then increased to 2000 rpm for 1 minute. The total mixing time in 
the blender was 5 minutes and the product was a free-fl owing powder with a maximum 
temperature of 60-65 °C, which means low scorch. The powder was then sheeted and 
mixed an additional nine minutes on a conventional 6 inch two-roll mill. The mill capacity 
was 300-350 kg/h compared to 70 kg/h for slab rubber mixed on the same mill.

A more useful comparison is powdered rubber versus bale rubber in an internal mixer 
[4]. Bale rubber, pre-mixed powdered rubber and unmixed powdered nitrile rubber were 
mixed in a small Banbury mixer at 77 rpm and with cooled rotors. It was found that 
powdered rubbers had a higher power peak than bale rubbers. The mixing was complete 
in one stage with the powdered rubbers but bale rubbers required 25-60% more energy 
in a second stage to reach the same degree of carbon dispersion. Consequently, the mixing 
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time is greatly reduced with powdered rubber. Unfortunately, no quantitative data is 
available for the cold-feed extrusion of powdered rubber where the material is likely 
to have its greatest advantage. Goshorn [5] did a single trial with a twin-screw 3 inch 
extruder and a 3½-inch single screw extruder, both with conventional rubber screw 
design. Production rates up to 150 kg/h were achieved although the tensile properties 
were inferior to the mill-mixed slab rubber. The properties could probably be improved 
by proper selection of screw design and operating conditions.

7.3 The Infl uence of Particle Morphology

Bleyrie [2] has published the only quantitative data on the effect of rubber particle 
size and morphology on mixing. Using powders formed by grinding, he found that the 
mixing time on a 6-inch mill was greatly reduced for powders compared to slab rubber 
and that the work input required to achieve 99.5% black dispersion depended upon 
particle size (Table 7.1).

Particles prepared by any of the three methods gave similar results for the same particle 
size. Once the particle size is below 1 mm, where powder-like behaviour rather than 
granular behaviour is observed, the properties of the material depend only slightly on 
particle size. Typically the powdered rubber had a higher Mooney viscosity than slab 
rubber for the same carbon black dispersion because less mechanochemical degradation 
occurred in processing with the powdered rubber.

7.4 Evaluation of Powdered Rubbers

Goshorn and Wolf [6] have published the only economic comparison for powdered 
rubbers, as summarised in Table 7.2. Although 1965 cost fi gures are used in this 
calculation, the relative increase in the labour, material and capital costs since then has 

Table 7.1 The effect of particle size of ground rubbers on 
processing

Particle size (mm) Mixing Time (min) Work Input (kWh/kg)
Slab 24 3.23

3.2 6 1.27

1.2 4 0.80

0.7 3 0.65

0.25 2 0.52

Reproduced from Bleyrie [2]
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been nearly the same for each component so that the conclusions would remain unaltered 
for current fi gures. Judging from the unit capital cost and manpower requirements, the 
powdered rubber with tandem extruders potentially offers signifi cant savings compared 
to the conventional rubber plant. If it is assumed that plants operate 300 days per year 
at 24 hours per day, the net annual capital cost is 15% initial cost and labour costs 
are $2.50 per man-hour, then the net unit savings can be calculated as in Example 1. 
This means that there could be a price premium up to $0.27 per pound and still the 
production cost would equal bale rubber, although these fi gures are probably optimistic 
for the average processor. As the batch size increased by using larger Banbury mixers 
or with the choice of alternative auxiliary equipment, much of this differential would 
disappear. As an estimate, the probably acceptable price differential should be 3-10 cents 
per pound in current prices.

Because the margin of increased profi tability with powdered rubbers is small and because 
nitrile rubber has been the only produce commercially available, powdered rubbers have 
made no impact on the industry. As long as the choice remains between bale rubber or 
powdered rubber in an internal mixer, this will remain the case. However, there are two 
developments which could radically alter this picture. Firstly, large volume products 

Table 7.2 Cost comparison for powdered rubbers
Conventional Mix (50 
lb batch)

Cycle Time 
(min)

Operators Manhours Production 
Rate (lb/h)

Capital 
Costs (US$) 

in 1965
Banbury IA 5 2 0.167 44,000

  Sheet-off mill 4 1 0.067 25,000

  Warm-up mill (189) ½ 0.575 25,000

  Tuber 189 1½ 4.725 6,000

198 5 6.534 15.9 100,000
Powder mix – Tandem 
extruders
  Henschel Rapid Mixer

5 2 0.167 12,000

  Extruder 1 (70.5) ½ 0.587 15,000

  Extruder 2 83 1½ 2.070 15,000

88 4 2.824 36.2 42,000
Powder mix – Pelletiser
  Henschel Rapid Mixer

5 2 0.167 12,000

  Pelletiser 2.5 1 0.042 6,000

  Extruder 162 2 5.400 15,000

169.5 5 5.609 18.5 33,000
From Goshorn and Wolf [6] based on 1965 cost data
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such as natural rubber of SBR may become available in commercial quantities. If this 
should happen, then the price premium may be expected to drop drastically to the point 
where the only difference in cost of the raw material is the cost of powder production. 
For large scale rubbers this would be only several cents per pound. Secondly, rubber 
extruders designed specifi cally for powdered rubbers could become available. Large-
volume, continuous one-step mixing would then become feasible and then the savings 
in production costs would become signifi cant.

The capital investment and risks involved with a new technology such as powdered 
rubbers in the highly competitive rubber industry means that the introduction of 
continuous processing of powdered rubbers will be a slow operation. However, once one 
major manufacturer has developed its own equipment and process, there will be a large 
demand for powdered rubber, which will bring large-volume supply and  a decrease in 
the price premium as well as savings in processing costs. Once this initial breakthrough 
has been achieved, it is likely that powdered rubber technology will rapidly become 
widespread among large manufacturers to protect their market share. The technology 
will take much longer to become attractive to small manufacturers or for lines with 
frequent recipe changes.

EXAMPLE 1: Potential Unit Savings for Powder Rubber

Conventional Mix Powder Rubber Tandem 
Extruders

Annual Production (lb)
= lb/h x 300 x 24

1.145 x 105 2.6 x 105

Labour (manhours)
    = manhours
    50 lb batch

1.365 x 104 1.47 x 104

Labour costs = $2.50 x Labour $34,200 $36,800
Capital costs = 0.15 x initial cost $15,000 $6,300
Annual cost (excluding Common 
costs)

$49,200 $42,110

Unit cost ($/lb) 0.43 0.16
Cost difference = $0.27/lb0

x annual production
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